Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised **Papers**
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

lindexed

PORTICO

■ Volumes and Issues
■ Contents of Issue 2

Atmos. Chem. Phys., 5, 385-392, 2005 www.atmos-chem-phys.net/5/385/2005/ © Author(s) 2005. This work is licensed under a Creative Commons License.

Near-IR photodissociation of peroxy acetyl nitrate

S. A. Nizkorodov¹, J. D. Crounse², J. L. Fry², C. M. Roehl³, and P. O. Wennberg³

Department of Chemistry, University of California at Irvine, Irvine, CA 92697,

²Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

³Division of Geological and Planetary Sciences and Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA

Abstract. Measurements of the C-H overtone transition strengths combined with estimates of the photodissociation cross sections for these transitions suggest that near-IR photodissociation of peroxy acetyl nitrate (PAN) is less significant ($J_{\text{near-IR}} \approx 3 \text{x} 10^{-8} \text{s}^{-1}$ at noon) in the lower atmosphere than competing sinks resulting from unimolecular decomposition and ultraviolet photolysis. This is in contrast to the photochemical behavior of a related peroxy nitrate, pernitric acid (PNA), that undergoes rapid near-IR photolysis in the atmosphere with $J_{\rm near-}$ $_{\text{ID}} \approx 10^{-5} \text{s}^{-1}$ at noon (Roehl et al., 2002). This difference is attributed to the larger binding energy and larger number of vibrational degrees of freedom in PAN, which make $4v_{CH}$ the lowest overtone excitation with a high photodissociation yield (as opposed to 2v_{OH} in PNA).

■ Final Revised Paper (PDF, 1783 KB)
■ Discussion Paper (ACPD)

Citation: Nizkorodov, S. A., Crounse, J. D., Fry, J. L., Roehl, C. M., and Wennberg, P. O.: Near-IR photodissociation of peroxy acetyl nitrate, Atmos. Chem. Phys., 5, 385-392, 2005. ■ Bibtex ■ EndNote Reference <u>Manager</u>

Library Search Author Search

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & **Background Information**

Recent Papers

01 | ACP, 06 Feb 2009: Thermodynamics of homogeneous nucleation of ice particles in the polar summer mesosphere

02 | ACP, 06 Feb 2009: Airborne measurements of nucleation mode particles II: boreal forest nucleation events

03 | ACP, 06 Feb 2009: Coupling aerosol-cloudradiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources