# Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

| EGU Journals | Contact

## Online Library ACP

- Recent Final Revised **Papers**
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

**Submission** 

Production

Subscription

### Comment on a Paper



lindexed



PORTICO

■ Volumes and Issues
■ Contents of Issue 6

Atmos. Chem. Phys., 5, 1459-1466, 2005 www.atmos-chem-phys.net/5/1459/2005/ © Author(s) 2005. This work is licensed under a Creative Commons License.

# Systematic errors in global air-sea CO<sub>2</sub> flux caused by temporal averaging of sea-level pressure

H. Kettle and C. J. Merchant School of GeoSciences, University of Edinburgh, West Mains Rd, Edinburgh EH9 3JN, UK

Abstract. Long-term temporal averaging of meteorological data, such as wind speed and air pressure, can cause large errors in air-sea carbon flux estimates. Other researchers have already shown that time averaging of wind speed data creates large errors in flux due to the non-linear dependence of the gas transfer velocity on wind speed (Bates and Merlivat, 2001). However, in general, wind speed is negatively correlated with air pressure, and a given fractional change in the pressure of dry air produces an equivalent fractional change in the atmospheric partial pressure of carbon dioxide (pCO<sub>2air</sub>). Thus low pressure systems cause a drop in pCO<sub>2air</sub>, which together with the associated high winds, promotes outgassing/reduces uptake of CO2 from the ocean. Here we quantify the errors in global carbon flux estimates caused by using monthly or climatological pressure data to calculate pCO<sub>2air</sub> (and thus ignoring the covariance of wind and pressure) over the period 1990-1999, using two common parameterisations for gas transfer velocity. Results show that on average, compared with estimates made using 6 hourly pressure data, the global oceanic sink is systematically overestimated by 7% (W92) and 10% (WM99) when monthly mean pressure is used, and 9% (W92) and 12% (WM99) when climatological pressure is used.

■ Final Revised Paper (PDF, 507 KB) ■ Discussion Paper (ACPD)

Citation: Kettle, H. and Merchant, C. J.: Systematic errors in global air-sea CO<sub>2</sub> flux caused by temporal averaging of sea-level pressure, Atmos. Chem. Phys., 5, 1459-1466, 2005. ■ <u>Bibtex</u> ■ <u>EndNote</u> Manager



Library Search Author Search

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & **Background Information**

### **Recent Papers**

01 | ACPD, 10 Feb 2009: Bromocarbons in the tropical marine boundary layer at the Cape Verde Observatory measurements and modelling

02 | ACPD, 10 Feb 2009: Long-term study of VOCs measured with PTR-MS at a rural site in New Hampshire with urban influences

03 | ACPD, 10 Feb 2009: Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from space (SCIAMACHY and OMI