

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

Volumes and Issues Contents of Issue 12 Atmos. Chem. Phys., 5, 3205-3218, 2005 www.atmos-chem-phys.net/5/3205/2005/

© Author(s) 2005. This work is licensed under a Creative Commons License.

Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model

R. M. Doherty¹, D. S. Stevenson¹, W. J. Collins², and M. G. Sanderson² ¹Institute of Atmospheric and Environmental Science, University of Edinburgh, Edinburgh, UK

²Hadley Centre for Climate Prediction and Research, Met Office, Exeter, UK

Abstract. The impact of convection on tropospheric O₃ and its precursors has been examined in a coupled chemistry-climate model. There are two ways that convection affects O_3 . First, convection affects O_3 by vertical mixing of O3 itself. Convection lifts lower tropospheric air to regions where the O₃ lifetime is longer, whilst mass-balance subsidence mixes O₃-rich upper tropospheric (UT) air downwards to regions where the O₃ lifetime is shorter. This tends to decrease UT O₃ and the overall tropospheric column of O_3 . Secondly, convection affects O_3 by vertical mixing of O_3 precursors. This affects O₃ chemical production and destruction. Convection transports isoprene and its degradation products to the UT where they interact with lightning NO_x to produce PAN, at the expense of NO_x . In our model, we find that convection reduces UT NO_x through this mechanism; convective down-mixing also flattens our imposed profile of lightning emissions, further reducing UT NO_x. Over tropical land, which has large lightning NO_x emissions in the UT, we find convective lofting of NO_x from surface sources appears relatively unimportant. Despite UT NO_x decreases, UT O_3 production increases as a result of UT HO_x increases driven by isoprene oxidation chemistry. However, UT $\rm O_3$ tends to decrease, as the effect of convective overturning of O₃ itself dominates over changes in O₃ chemistry. Convective transport also reduces UT O3 in the mid-latitudes resulting in a 13% decrease in the global tropospheric O₃ burden. These results contrast with an earlier study that uses a model of similar chemical complexity. Differences in convection schemes as well as chemistry schemes - in particular isoprene-driven changes are the most likely causes of such discrepancies. Further modelling studies are needed to constrain this uncertainty range.

■ <u>Final Revised Paper</u> (PDF, 1981 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Doherty, R. M., Stevenson, D. S., Collins, W. J., and Sanderson, M. G.: Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model, Atmos. Chem. Phys., 5, 3205-3218, 2005. Bibtex EndNote Reference Manager

| EGU Journals | Contact

Search ACP Library Search Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 19 Feb 2009: Relating observations of contrail persistence to numerical weather analysis output

02 | ACP, 19 Feb 2009: Increasing ozone in marine boundary layer inflow at the west coasts of North America and Europe

03 | ACP, 19 Feb 2009: Influence of non-ideality on condensation to aerosol

04 | ACP, 19 Feb 2009: Uncertainty in global CCN