Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

Copernicus.org | EGU.eu

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

ISI indexed

Volumes and Issues Contents of Issue 4

Atmos. Chem. Phys., 4, 1007-1024, 2004 www.atmos-chem-phys.net/4/1007/2004/
© Author(s) 2004. This work is licensed under a Creative Commons License.

Gas-particle interactions above a Dutch heathland: II. Concentrations and surface exchange fluxes of atmospheric particles

E. Nemitz¹, M. A. Sutton¹, G. P. Wyers², R. P. Otjes², M. G. Mennen³, E. M. van Putten³, and M. W. Gallagher⁴

¹ Atmospheric Sciences, Centre for Ecology and Hydrology (CEH), Edinburgh Research Station, Bush Estate, Penicuik, Midlothian, EH26 OQB, UK

 2 Energy research Centre of the Netherlands (ECN), Postbus 1, 1755 Petten ZG, The Netherlands

³National Institute of Public Health and Environment (RIVM), Postbus 1, 3720 BA Bilthoven, The Netherlands

⁴University of Manchester Institute of Science and Technology (UMIST), Physics Department, PO Box 88, Manchester, M60 1QD, UK

Abstract. Size-dependent particle number fluxes measured by eddycovariance (EC) and continuous fluxes of ammonium (NH, +) measured with the aerodynamic gradient method (AGM) are reported for a Dutch heathland. Daytime deposition velocities (V_d) by EC with peak values of 5 to 10 mm s⁻¹ increased with particle diameter (d_p) over the range 0.1–0.5 μ m, and are faster than predicted by current models. With a mean V_d of 2.0 mm s⁻¹ (daytime: 2.7; night-time 0.8 mm s⁻¹) NH_{Δ}^{+} fluxes by AGM are overall in agreement with former measurements and NH_A^+ -N dry deposition amounts to 20% of the dry input of NH3-N over the measurement period. These surface exchange fluxes are analyzed together with simultaneous gas-phase flux measurements for indications of gas-particle interactions. On warm afternoons the apparent fluxes of acids and aerosol above the heathland showed several coinciding anomalies, all of which are consistent with NH₄ + evaporation during deposition: (i) canopy resistances for HNO₃ and HCl of up to 100 s m⁻¹, (ii) simultaneous particle emission of small particles (D_p <0.18 μ m) and deposition of larger particles ($D_p > 0.18 \mu m$), (iii) NH_4^+ deposition faster than derived from size-distributions and size-segregated EC particle fluxes. These observations coincide with the observations of (i) surface concentration products of NH₃ and HNO₃ well below the thermodynamic equilibrium value and (ii) Damköhler numbers that indicate chemical conversion to be sufficiently fast to modify exchange fluxes. The measurements imply a removal rate of volatile NH₄ + of 3-30×10⁻⁶ s⁻¹ averaged over the 1 km boundary-layer, while NH3 deposition is underestimated by typically 20 ng m⁻² s⁻¹ (28%) and flux reversal may

■ Final Revised Paper (PDF, 513 KB) ■ Discussion Paper (ACPD)

occur.

Citation: Nemitz, E., Sutton, M. A., Wyers, G. P., Otjes, R. P., Mennen, M. G., van Putten, E. M., and Gallagher, M. W.: Gas-particle interactions above a Dutch heathland: II. Concentrations and surface exchange fluxes of atmospheric particles, Atmos. Chem. Phys., 4, 1007-1024,

Search ACP

Library Search

Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 02 Mar 2009: Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM

02 | ACPD, 02 Mar 2009: On the importance of small ice crystals in tropical anvil

03 | ACPD, 02 Mar 2009: Modelling the impacts of ammonia emissions reductions on North American air quality 2004. ■ <u>Bibtex</u> ■ <u>EndNote</u> ■ <u>Reference Manager</u>