Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

ISI indexed

PORTICO

■ Volumes and Issues ■ Contents of Issue 4 ■ Special Issue Atmos. Chem. Phys., 4, 1125-1137, 2004

www.atmos-chem-phys.net/4/1125/2004/
© Author(s) 2004. This work is licensed under a Creative Commons License.

Modelling atmospheric transport of **a**-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP

K. M. Hansen, J. H. Christensen, J. Brandt, L. M. Frohn, and C. GeelsDepartment of Atmospheric Environment, National Environmental Research
Institute, Roskilde, Denmark

Abstract. The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α -isomer of the pesticide hexachlorocyclohexane (α -HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of a-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the airsurface exchange processes of POPs.

■ Final Revised Paper (PDF, 1209 KB) ■ Discussion Paper (ACPD)

Citation: Hansen, K. M., Christensen, J. H., Brandt, J., Frohn, L. M., and Geels, C.: Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP, Atmos. Chem. Phys., 4, 1125-1137, 2004. ■ Bibtex ■ EndNote Reference Manager

Search ACP

Library Search
Author Search

Naws

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 02 Mar 2009:

Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM

02 | ACPD, 02 Mar 2009:

On the importance of small ice crystals in tropical anvil cirrus

03 | ACPD, 02 Mar 2009:

Modelling the impacts of ammonia emissions reductions on North American air quality