Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

| EGU Journals | Contact

Online Library ACP

- Recent Final Revised **Papers**
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

lindexed

PORTICO

■ Volumes and Issues
■ Contents of Issue 5

Atmos. Chem. Phys., 4, 1237-1253, 2004 www.atmos-chem-phys.net/4/1237/2004/ © Author(s) 2004. This work is licensed under a Creative Commons License.

Ultra-violet absorption cross sections of isotopically substituted nitrous oxide species: ¹⁴N¹⁴NO, ¹⁵N¹⁴NO, $^{14}N^{15}NO$ and $^{15}N^{15}NO$

P. von $Hessberg^1$, J. $Kaiser^{2,*}$, M. B. $Enghoff^1$, C. A. $McLinden^3$, S. L. Sorensen⁴, T. Röckmann², and M. S. Johnson¹

¹Department of Chemistry, University of Copenhagen, Copenhagen, Denmark

²Max-Planck Institute for Nuclear Physics, Atmospheric Physics Division, Heidelberg, Germany

³Air Quality Research Branch, Meteorological Service of Canada, Toronto, Ontario,

⁴Synchrotron Radiation Research, Lund University, Lund, Sweden *now at Department of Geosciences, Princeton University, Princeton, New Jersey, USA

Abstract. The isotopically substituted nitrous oxide species ¹⁴N¹⁴NO, $^{15}N^{14}NO$, $^{14}N^{15}NO$ and $^{15}N^{15}NO$ were investigated by ultra-violet (UV) absorption spectroscopy. High precision cross sections were obtained for the wavelength range 181 to 218nm at temperatures of 233 and 283K. These data are used to calculate photolytic isotopic fractionation constants as a function of wavelength. The fractionation constants were used in a three-dimensional chemical transport model in order to simulate the actual fractionation of N_2O in the stratosphere, and the results were found to be in good agreement with field studies.

■ Final Revised Paper (PDF, 1193 KB) ■ Discussion Paper (ACPD)

Citation: von Hessberg, P., Kaiser, J., Enghoff, M. B., McLinden, C. A., Sorensen, S. L., Röckmann, T., and Johnson, M. S.: Ultra-violet absorption cross sections of isotopically substituted nitrous oxide species: 14N14NO, ¹⁵N¹⁴NO, ¹⁴N¹⁵NO and ¹⁵N¹⁵NO, Atmos. Chem. Phys., 4, 1237-1253, 2004. ■ Bibtex ■ EndNote ■ Reference Manager

Library Search

Author Search

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & **Background Information**

Recent Papers

01 | ACPD, 03 Mar 2009: Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space-time spectra

02 | ACP, 03 Mar 2009: Temperature dependence of yields of secondary organic aerosols from the ozonolysis of a-pinene and limonene

03 | ACPD, 02 Mar 2009: How important is the vertical structure for the representation of aerosol impacts on the diurnal cycle