

under a Creative Commons License.

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

Volumes and Issues Contents of Issue 3 Atmos. Chem. Phys., 3, 469-474, 2003 www.atmos-chem-phys.net/3/469/2003/ © Author(s) 2003. This work is licensed

Heterogeneous conversion of NO₂ on secondary

organic aerosol surfaces: A possible source of nitrous acid (HONO) in the atmosphere?

R. Bröske, J. Kleffmann, and P. Wiesen Physikalische Chemie/FB 9, Bergische Universität, Gesamthochschule Wuppertal (BUGHW), D-42097 Wuppertal, Germany

Abstract. The heterogeneous conversion of NO₂ on different secondary organic aerosols (SOA) was investigated with the focus on a possible formation of nitrous acid (HONO). In one set of experiments different organic aerosols were produced in the reactions of O₃ with alpha-pinene, limonene or catechol and OH radicals with toluene or limonene, respectively. The aerosols were sampled on filters and exposed to humidified NO₂ mixtures under atmospheric conditions. The estimated upper limits for the uptake coefficients of NO₂ and the reactive uptake coefficients NO₂ -> HONO are in the range of 10^{-6} and 10^{-7} , respectively. The integrated HONO formation for 1 h reaction time was $< 10^{13}$ cm⁻² geometrical surface and $<10^{17}$ g⁻¹ particle mass. In a second set of experiments the conversion of NO₂ into HONO in the presence of organic particles was carried out in an aerosol flow tube under atmospheric conditions. In this case the aerosols were produced in the reaction of O₃ with beta-pinene, limonene or catechol, respectively. The upper limits for the reactive uptake coefficients NO₂ -> HONO were in the range of 7 x 10^{-7} - 9 x 10^{-6} . The results from the present study show that heterogeneous formation of nitrous acid on secondary organic aerosols (SOA) is unimportant for the atmosphere.

■ Final Revised Paper (PDF, 284 KB) ■ Discussion Paper (ACPD)

Citation: Bröske, R., Kleffmann, J., and Wiesen, P.: Heterogeneous conversion of NO2 on secondary organic aerosol surfaces: A possible source of nitrous acid (HONO) in the atmosphere?, Atmos. Chem. Phys., 3, 469-474, 2003. Bibtex EndNote Reference Manager

| EGU Journals | Contact

Search ACP	
Library Search	•
Author Search	•

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 11 Mar 2009: Measurements of Pollution In The Troposphere (MOPITT) validation through 2006

02 | ACPD, 10 Mar 2009: Regional differences in organic composition of submicron and single particles during INTEX-B 2006

03 | ACPD, 10 Mar 2009: First steps towards the assimilation of IASI ozone data into the MOCAGE-PALM system

04 | ACPD, 10 Mar 2009: