# Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

# | Copernicus.org | EGU.eu |

#### Home

#### Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

### Online Library ACPD

#### Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper





Volumes and Issues
 Contents of Issue 3
 Special Issue
 Atmos. Chem. Phys., 3, 651-663, 2003
 www.atmos-chem-phys.net/3/651/2003/
 Author(s) 2003. This work is licensed
 under a Creative Commons License.

# A fast $H_2O$ total column density product from GOME – Validation with in-situ aircraft measurements

T. Wagner<sup>1</sup>, J. Heland<sup>2</sup>, M. Zöger<sup>3</sup>, and U. Platt<sup>1</sup> <sup>1</sup>Institut für Umweltphysik, University of Heidelberg, Germany <sup>2</sup>Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut fr Physik der Atmosphäre, Oberpfaffenhofen, Germany <sup>3</sup>Deutsches Zentrum für Luft- und Raumfahrt (DLR), Elugabteilung

<sup>3</sup>Deutsches Zentrum für Luft- und Raumfahrt (DLR), Flugabteilung, Oberpfaffenhofen, Germany

Abstract. Atmospheric water vapour is the most important greenhouse gas which is responsible for about 2/3 of the natural greenhouse effect, therefore changes in atmospheric water vapour in a changing climate (the water vapour feedback) is subject to intense debate. H<sub>2</sub>O is also involved in many important reaction cycles of atmospheric chemistry, e.g. in the production of the OH radical. Thus, long time series of global H<sub>2</sub>O data are highly required. Since 1995 the Global Ozone Monitoring Experiment (GOME) continuously observes atmospheric trace gases. In particular it has been demonstrated that GOME as a nadir looking UV/vis-instrument is sensitive to many tropospheric trace gases. Here we present a new, fast H<sub>2</sub>O algorithm for the retrieval of vertical column densities from GOME measurements. In contrast to existing H<sub>2</sub>O retrieval algorithms it does not depend on additional information like e.g. the climatic zone, aerosol content or ground albedo. It includes an internal cloud-, aerosol-, and albedo correction which is based on simultaneous observations of the oxygen dimer O<sub>4</sub>. From sensitivity studies using atmospheric radiative modelling we conclude that our H<sub>2</sub>O retrieval overestimates the true atmospheric H<sub>2</sub>O vertical column density (VCD) by about 4% for clear sky observations in the tropics and sub-tropics, while it can lead to an underestimation of up to -18% in polar regions. For measurements over (partly) cloud covered ground pixels, however, the true atmospheric H<sub>2</sub>O VCD might be in general systematically underestimated. We compared the GOME H<sub>2</sub>O VCDs to ECMWF model data over one whole GOME orbit (extending from the Arctic to the Antarctic) including also totally cloud covered measurements. The correlation of the GOME observations and the model data yield the following results: a slope of 0.96 ( $r^2 = 0.86$ ) and an average bias of 5%. Even for measurements with large cloud fractions between 50% and 100% an average underestimation of only -18% was found. This high accuracy of our GOME  $H_2O$  data is also confirmed by the excellent agreement with in-situ aircraft measurements during the MINOS campaign in Greece in summer 2001 (slope of 0.97 ( $r^2 = 0.86$ ), and an average bias of only 0.2%). Our H<sub>2</sub>O algorithm can be directly adapted to the nadir observations of SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) which was launched on ENVISAT in March 2002. Near real time H<sub>2</sub>O column data from GOME and SCIAMACHY might be of great value for meteorological weather forecast.

| EGU Journals | Contact



# Search ACP Library Search Author Search

#### News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

#### **Recent Papers**

01 | ACP, 11 Mar 2009: Measurements of Pollution In The Troposphere (MOPITT) validation through 2006

02 | ACP, 11 Mar 2009: Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean

03 | ACPD, 10 Mar 2009: Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

04 | ACPD, 10 Mar 2009: Regional differences in ■ <u>Final Revised Paper</u> (PDF, 4006 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Wagner, T., Heland, J., Zöger, M., and Platt, U.: A fast H<sub>2</sub>O total column density product from GOME – Validation with in-situ aircraft measurements, Atmos. Chem. Phys., 3, 651-663, 2003. ■ <u>Bibtex</u> ■ <u>EndNote</u> ■ <u>Reference Manager</u>