Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 3 ■ Special Issue Atmos. Chem. Phys., 3, 739-745, 2003 www.atmos-chem-phys.net/3/739/2003/ © Author(s) 2003. This work is licensed under a Creative Commons License.

Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes

H. Fischer¹, M. de Reus¹, M. Traub¹, J. Williams¹, J. Lelieveld¹, J. de Gouw², C. Warneke², H. Schlager³, A. Minikin³, R. Scheele⁴, and P. Siegmund⁴ ¹Max Planck Institute for Chemistry, Mainz, Germany

²CIRES and NOAA Aeronomy Laboratory, Boulder, Colorado, USA ³Institute for Atmospheric Physics, DLR, Oberpfaffenhofen, Germany

⁴KNMI, de Bilt, The Netherlands

Abstract. On 22 August 2001 a measurement flight was performed with the German research aircraft FALCON from Sardinia to Crete as part of the Mediterranean Oxidant Study (MINOS). Cruising at 8.2 km, the aircraft was forced to climb to 11.2 km over the southern tip of Italy to stay clear of the anvil of a large cumulonimbus tower. During ascent into the lowermost stratosphere in-situ measurements onboard the FALCON indicated several sharp increases in the concentrations of tropospheric trace gases, e.g. CO, acetone, methanol, benzene and acetonitrile, above the anvil. During one particular event deep in the stratosphere, at O3 concentrations exceeding 200 ppv, CO increased from about 60 to 90 ppv, while the concentration of acetone and methanol increased by more than a factor of 2 (0.7 to 1.8 ppv for acetone; 0.4 to 1.4 ppv for methanol). Enhancements for the short lived species benzene are even higher, increasing from 20 pptv in the stratosphere to approx. 130 pptv. The concentrations during the event were higher than background concentrations in the upper troposphere, indicating that polluted boundary layer air was directly mixed into the lowermost stratosphere.

■ <u>Final Revised Paper</u> (PDF, 714 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Fischer, H., de Reus, M., Traub, M., Williams, J., Lelieveld, J., de Gouw, J., Warneke, C., Schlager, H., Minikin, A., Scheele, R., and Siegmund, P.: Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes, Atmos. Chem. Phys., 3, 739-745, 2003. <u>Bibtex</u> <u>EndNote</u> <u>Reference Manager</u>

| EGU Journals | Contact

Search ACP	
Library Search	•
Author Search	₩

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 11 Mar 2009: Measurements of Pollution In The Troposphere (MOPITT) validation through 2006

02 | ACP, 11 Mar 2009: Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean

03 | ACPD, 10 Mar 2009: Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

04 | ACPD, 10 Mar 2009: Regional differences in