Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union | Copernicus.org | EGU.eu | | EGU Journals | Contact ## Online Library ACP - Recent Final Revised **Papers** - Volumes and Issues - Special Issues - Library Search - Title and Author Search Online Library ACPD Alerts & RSS Feeds General Information Submission Production Subscription ### Comment on a Paper lindexed PORTICO ■ Volumes and Issues ■ Contents of Issue 3 Atmos. Chem. Phys., 3, 881-891, 2003 www.atmos-chem-phys.net/3/881/2003/ © Author(s) 2003. This work is licensed under a Creative Commons License. # Dependence of solar radiative forcing of forest fire aerosol on ageing and state of mixture M. Fiebig¹, A. Stohl², M. Wendisch³, S. Eckhardt², and A. Petzold¹ ¹Deutsches Zentrum für Luft und Raumfahrt Oberpfaffenhofen, Institut für Physik der Atmosphäre, Wessling, Germany ²Technische Universität München, Lehrstuhl für Bioklimatologie und Immissionsforschung, Freising-Weihenstephan, Germany ³Leibniz-Institut für Troposphärenforschung, Leipzig, Germany Abstract. During airborne in situ measurements of particle size distributions in a forest fire plume originating in Northern Canada, an accumulation mode number mean diameter of 0.34 µm was observed over Lindenberg, Germany on 9 August 1998. Realizing that this is possibly the largest value observed for this property in a forest fire plume, scenarios of plume ageing by coagulation are considered to explain the observed size distribution, concluding that the plume dilution was inhibited in parts of the plume. The uncertainties in coagulation rate and transition from external to internal mixture of absorbing forest fire and non-absorbing background particles cause uncertainties in the plume's solar instantaneous radiative forcing of 20-40% and of a factor of 5-6, respectively. Including information compiled from other studies on this plume, it is concluded that the plume's characteristics are qualitatively consistent with a radiative-convective mixed layer. ■ Final Revised Paper (PDF, 486 KB) ■ Discussion Paper (ACPD) Citation: Fiebig, M., Stohl, A., Wendisch, M., Eckhardt, S., and Petzold, A.: Dependence of solar radiative forcing of forest fire aerosol on ageing and state of mixture, Atmos. Chem. Phys., 3, 881-891, 2003. ■ Bibtex ■ EndNote ■ Reference Manager Library Search Author Search - Sister Journals AMT & GMD - Financial Support for Authors - Journal Impact Factor - Public Relations & Background Information ### Recent Papers 01 | ACP, 11 Mar 2009: Measurements of Pollution In The Troposphere (MOPITT) validation through 2006 02 | ACP, 11 Mar 2009: Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean 03 | ACPD, 10 Mar 2009: Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms 04 | ACPD, 10 Mar 2009: Regional differences in