| Copernicus.org | EGU.eu |

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

Volumes and Issues Contents of Issue 4

Atmos. Chem. Phys., 3, 1237-1252, 2003 www.atmos-chem-phys.net/3/1237/2003/ © Author(s) 2003. This work is licensed under a Creative Commons License.

Charging of ice-vapor interfaces: applications to thunderstorms

J. Nelson¹ and M. Baker²

¹Nelson Scientific, 7-13-8 Oginosato Higashi, Otsu, Shiga 520-0248, Japan ²Depts of Earth and Space Science and Atmospheric Sciences, University of Washington, Seattle, WA 98195-1310 USA

Abstract. The build-up of intrinsic Bjerrum and ionic defects at ice-vapor interfaces electrically charges ice surfaces and thus gives rise to many phenomena including thermoelectricity, ferroelectric ice films, sparks from objects in blizzards, electromagnetic emissions accompanying cracking in avalanches, glaciers, and sea ice, and charge transfer during ice-ice collisions in thunderstorms. Fletcher's theory of the ice surface in equilibrium proposed that the Bjerrum defects have a higher rate of creation at the surface than in the bulk, which produces a high concentration of surface D defects that then attract a high concentration of OH⁻ ions at the surface. Here, we add to this theory the effect of a moving interface caused by growth or sublimation. This effect can increase the amount of ionic surface charges more than 10-fold for growth rates near 1 μ m s⁻¹ and can extend the spatial separation of interior charges in qualitative agreement with many observations. In addition, ice-ice collisions should generate sufficient pressure to melt ice at the contact region and we argue that the ice particle with the initially sharper point at contact loses more mass of melt than the other particle. A simple analytic model of this process with parameters that are consistent with observations leads to predicted collisional charge exchange that semiquantitatively explains the negative charging region of thunderstorms. The model also has implications for snowflake formation, ferroelectric ice, polarization of ice in snowpacks, and chemical reactions in ice surfaces

■ Final Revised Paper (PDF, 616 KB) ■ Discussion Paper (ACPD)

Citation: Nelson, J. and Baker, M.: Charging of ice-vapor interfaces: applications to thunderstorms, Atmos. Chem. Phys., 3, 1237-1252, 2003. ■ <u>Bibtex</u> ■ <u>EndNote</u> ■ <u>Reference Manager</u>

| EGU Journals | Contact

Search ACP Library Search

New

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 11 Mar 2009: Measurements of Pollution In The Troposphere (MOPITT) validation through 2006

02 | ACP, 11 Mar 2009: Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean

03 | ACPD, 10 Mar 2009: Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

04 | ACPD, 10 Mar 2009: Regional differences in