Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

| EGU.eu | | EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

ISI indexed

■ Volumes and Issues
■ Contents of Issue 3

Atmos. Chem. Phys., 9, 771-782, 2009 www.atmos-chem-phys.net/9/771/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

Loading-dependent elemental composition of **a**-pinene SOA particles

J. E. Shilling^{1,*}, Q. Chen¹, S. M. King¹, T. Rosenoern¹, J. H. Kroll², D. R. Worsnop², P. F. DeCarlo^{3,4,**}, A. C. Aiken^{4,5}, D. Sueper^{2,4,5}, J. L. Jimenez^{4,5}, and S. T. Martin^{1,6}

¹School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

⁴Cooperative Institute for Research in the Environmental Sciences (CIRES), Univ. of Colorado, Boulder, CO 80309, USA

 5 Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA

⁶Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA

*now at: Pacific Northwest National Laboratory, Atmospheric Sciences and Global Change Division, Richland, WA 99352, USA

 ** now at: Paul Scherrer Institut, Laboratory of Atmospheric Chemistry, Villigen-PSI, 5232, Switzerland

Abstract. The chemical composition of secondary organic aerosol (SOA) particles, formed by the dark ozonolysis of a-pinene, was characterized by a high-resolution time-of-flight aerosol mass spectrometer. The experiments were conducted using a continuous-flow chamber, allowing the particle mass loading and chemical composition to be maintained for several days. The organic portion of the particle mass loading was varied from 0.5 to >140 $\mu\text{g/m}^3$ by adjusting the concentration of reacted $\alpha\text{-pinene}$ from 0.9 to 91.1 ppbv. The mass spectra of the organic material changed with loading. For loadings below 5 μ g/m³ the unit-mass-resolution m/z 44 (CO_2^+) signal intensity exceeded that of m/z 43 (predominantly $C_2H_3O^+$), suggesting more oxygenated organic material at lower loadings. The composition varied more for lower loadings (0.5 to 15 µg/m³) compared to higher loadings (15 to >140 μ g/m³). The high-resolution mass spectra showed that from >140 to 0.5 μ g/m³ the mass percentage of fragments containing carbon and oxygen (C_xH_vO₇+) monotonically increased from 48% to 54%. Correspondingly, the mass percentage of fragments representing $C_{\chi}H_{\chi}^{+}$ decreased from 52% to 46%, and the atomic oxygento-carbon ratio increased from 0.29 to 0.45. The atomic ratios were accurately parameterized by a four-product basis set of decadal volatility (viz. 0.1, 1.0, 10, 100 μ g/m³) employing products having empirical formulas of $C_1H_{1.32}O_{0.48}$, $C_1H_{1.36}O_{0.39}$, $C_1H_{1.57}O_{0.24}$, and $C_1H_{1.76}O_{0.14}$. These findings suggest considerable caution is warranted in the extrapolation of laboratory results that were obtained under conditions of relatively high loading (i.e., $>15 \mu g/m^3$) to modeling applications relevant to the atmosphere, for which loadings of 0.1 to 20 µg/m³ are typical. For the lowest loadings, the particle mass spectra resembled observations

Search ACP

Library Search

Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 12 Mar 2009:

A new insight on tropospheric methane in the Tropics – first year from IASI hyperspectral infrared observations

02 | ACP, 12 Mar 2009:

HOCI chemistry in the Antarctic Stratospheric Vortex 2002, as observed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)

03 | ACP, 12 Mar 2009: Comparison of tropospheric gas-phase chemistry schemes for use within global

models

²Aerodyne Research, Inc., Billerica, MA 08121, USA

³ Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80309, USA

reported in the literature for some atmospheric particles.

■ <u>Final Revised Paper</u> (PDF, 1793 KB) ■ <u>Supplement</u> (1104 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., DeCarlo, P. F., Aiken, A. C., Sueper, D., Jimenez, J. L., and Martin, S. T.: Loading-dependent elemental composition of a-pinene SOA particles, Atmos. Chem. Phys., 9, 771-782, 2009. ■ Bibtex ■ EndNote ■ Reference Manager