Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

| EGU.eu | | EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised **Papers**
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

indexed

■ Volumes and Issues
■ Contents of Issue 21
■ Special Issue Atmos. Chem. Phys., 9, 8377-8412, 2009 www.atmos-chem-phys.net/9/8377/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

NO_v production by lightning in Hector: first airborne measurements during SCOUT-O3/ACTIVE

H. Huntrieser¹, H. Schlager¹, M. Lichtenstern¹, A. Roiger¹, P. Stock¹, A. Minikin¹, H. Höller¹, K. Schmidt², H.-D. Betz^{2,3}, G. Allen⁴, S. Viciani⁵, A. Ulanovsky⁶, F. Ravegnani⁷, and D. Brunner⁸

¹Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

²nowcast GmbH, München, Germany

³Physics Department, University of Munich, Germany

⁴School of Earth, Atmospheric & Environmental Sciences, University of Manchester, UK

⁵ Istituto Nazionale di Ottica Applicata (CNR-INOA), Firenze, Italy

⁶Central Aerological Observatory, Moscow, Russia

⁷Institute of Atmospheric Sciences and Climate (CNR-ISAC), Bologna, Italy ⁸Laboratory for Air Pollution and Environmental Technology, Empa, Swiss Federal Laboratories for Materials Testing and Research, Dübendorf, Switzerland

Abstract. During the SCOUT-03/ACTIVE field phase in November-December 2005, airborne in situ measurements were performed inside and in the vicinity of thunderstorms over northern Australia with several research aircraft (German Falcon, Russian M55 Geophysica, and British Dornier-228. Here a case study from 19 November is presented in detail on the basis of airborne trace gas measurements (NO, NO $_{\rm V}$, CO, O $_{\rm 3}$) and stroke measurements from the German Lightning Location NETwork (LINET), set up in the vicinity of Darwin during the field campaign. The anvil outflow from three different types of thunderstorms was probed by the Falcon aircraft: (1) a continental thunderstorm developing in a tropical airmass near Darwin, (2) a mesoscale convective system (MCS), known as Hector, developing within the tropical maritime continent (Tiwi Islands), and (3) a continental thunderstorm developing in a subtropical airmass ~200 km south of Darwin. For the first time detailed measurements of NO were performed in the Hector outflow. The highest NO mixing ratios were observed in Hector with peaks up to 7 nmol mol⁻¹ in the main anvil outflow at ~11.5–12.5 km altitude. The mean NO_x (=NO+NO₂) mixing ratios during these penetrations (~100 km width) varied between 2.2 and 2.5 nmol mol^{-1} . The NO_{x} contribution from the boundary layer (BL), transported upward with the convection, to total anvil-NO_x was found to be minor (<10%). On the basis of Falcon measurements, the mass flux of lightningproduced NO_x (LNO_x) in the well-developed Hector system was estimated to $0.6-0.7 \text{ kg(N) s}^{-1}$. The highest average stroke rate of the probed thunderstorms was observed in the Hector system with 0.2 strokes s⁻¹ (here only strokes with peak currents ≥ 10 kA contributing to LNO $_{_{\rm Y}}$ were considered). The LNO_v mass flux and the stroke rate were combined to estimate the ${\rm LNO}_{\rm x}$ production rate in the different thunderstorm types. For a better comparison with other studies, LINET strokes were scaled with

Lightning Imaging Sensor (LIS) flashes. The LNO_x production rate per LIS

Library Search Author Search

- Sister Journals AMT & GMD
- Public Relations & **Background Information**

Recent Papers

01 | ACPD, 19 Nov 2009: Tropospheric photooxidation of CF₃CH₂CHO and CF₃(CH₂) CHO initiated by Cl atoms and OH radicals

02 | ACP, 19 Nov 2009: Regional N₂O fluxes in Amazonia derived from aircraft vertical profiles

03 | ACP, 19 Nov 2009: Application of ϕ -IASI to IASI: retrieval products evaluation and radiative transfer consistency

04 | ACPD, 18 Nov 2009:

flash was estimated to 4.1-4.8 kg(N) for the well-developed Hector system, and to 5.4 and 1.7 kg(N) for the continental thunderstorms developing in subtropical and tropical airmasses, respectively. If we assume, that these different types of thunderstorms are typical thunderstorms globally (LIS flash rate $\sim 44 \text{ s}^{-1}$), the annual global LNO, production rate based on Hector would be $\sim 5.7-6.6 \, \text{Tg(N)} \, \text{a}^{-1}$ and based on the continental thunderstorms developing in subtropical and tropical airmasses ~ 7.6 and ~ 2.4 Tg(N) a⁻¹, respectively. The latter thunderstorm type produced much less LNO_v per flash compared to the subtropical and Hector thunderstorms, which may be caused by the shorter mean flash component length observed in this storm. It is suggested that the vertical wind shear influences the horizontal extension of the charged layers, which seems to play an important role for the flash lengths that may originate. In addition, the horizontal dimension of the anvil outflow and the cell organisation within the thunderstorm system are probably important parameters influencing flash length and hence LNO_x production per flash.

■ Final Revised Paper (PDF, 6716 KB) ■ Discussion Paper (ACPD)

Citation: Huntrieser, H., Schlager, H., Lichtenstern, M., Roiger, A., Stock, P., Minikin, A., Höller, H., Schmidt, K., Betz, H.-D., Allen, G., Viciani, S., Ulanovsky, A., Ravegnani, F., and Brunner, D.: NO_x production by lightning in Hector: first airborne measurements during SCOUT-O3/ACTIVE, Atmos. Chem. Phys., 9, 8377-8412, 2009. Bibtex EndNote Reference Manager