

Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

| EGU.eu | | EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised **Papers**
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

lindexed

■ Volumes and Issues
■ Contents of Issue 24

Atmos. Chem. Phys., 9, 9417-9432, 2009 www.atmos-chem-phys.net/9/9417/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

The influence of the vertical distribution of emissions on tropospheric chemistry

A. Pozzer^{1,2}, P. Jöckel^{2,*}, and J. Van Aardenne³

¹The Cyprus Institute, Energy, Environment and Water Research Centre, Nicosia,

²Max-Planck Institute of Chemistry, Air Chemistry Department, Mainz, Germany

³European Commission, DG Joint Research Centre, Ispra, Italy

*now at: Deutsches Zentrum fuer Luft- und Raumfahrt, Oberpfaffenhofen, Wessling, Germany

Abstract. The atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy atmospheric chemistry) is used to investigate the effect of height dependent emissions on tropospheric chemistry. In a sensitivity simulation, anthropogenic and biomass burning emissions are released in the lowest model layer. The resulting tracer distributions are compared to those of a former simulation applying height dependent emissions. Although the differences between the two simulations in the free troposphere are small (less than 5%), large differences are present in polluted regions at the surface, in particular for NO_{x} (more than 100%), CO (up to 30%) and non-methane hydrocarbons (up to 30%), whereas for OH the differences at the same locations are somewhat lower (15%). Global ozone formation is virtually unaffected by the choice of the vertical distribution of emissions. Nevertheless, local ozone changes can be up to 30%. Model results of both simulations are further compared to observations from field campaigns and to data from measurement stations.

■ Final Revised Paper (PDF, 1917 KB) ■ Supplement (54 KB) Discussion Paper (ACPD)

Citation: Pozzer, A., Jöckel, P., and Van Aardenne, J.: The influence of the vertical distribution of emissions on tropospheric chemistry, Atmos. Chem. Phys., 9, 9417-9432, 2009. ■ Bibtex ■ EndNote ■ Reference Manager

Library Search Author Search

- Sister Journals AMT & GMD
- Public Relations & **Background Information**

Recent Papers

01 | ACPD, 23 Dec 2009: Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic

02 | ACPD, 23 Dec 2009: Organic aerosol components observed in worldwide datasets from aerosol mass spectrometry

03 | ACPD, 23 Dec 2009: Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model