Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union | Copernicus.org | EGU.eu | ### | EGU Journals | Contact ## Online Library ACP - Recent Final Revised **Papers** - Volumes and Issues - Special Issues - Library Search - Title and Author Search Online Library ACPD Alerts & RSS Feeds General Information **Submission** Production Subscription ### Comment on a Paper lindexed ■ Volumes and Issues ■ Contents of Issue 3 ■ Special Issue Atmos. Chem. Phys., 8, 523-543, 2008 www.atmos-chem-phys.net/8/523/2008/ © Author(s) 2008. This work is licensed under a Creative Commons License. # Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description A. Baklanov¹, P. G. Mestayer², A. Clappier³, S. Zilitinkevich⁴, S. Joffre⁵, A. Mahura^{1,2}, and N. W. Nielsen¹ ¹Meteorological Research Department, Danish Meteorological Institute, DMI, Copenhagen, Denmark ²Laboratoire de Mécanique des Fluides, UMR CNRS 6598, Ecole Centrale de Nantes, ECN, France ³La section Sciences et Ingénierie de l'Environnement (SSIE), Ecole Polytechnique Fédérale de Lausanne, EPFL, Switzerland ⁴Division of Atmospheric Sciences, University of Helsinki, Finland ⁵Research & Development, Finnish Meteorological Institute, FMI, Helsinki, Finland Abstract. The increased resolution of numerical weather prediction models allows nowadays addressing more realistically urban meteorology and air pollution processes. This has triggered new interest in modelling and describing experimentally the specific features and processes of urban areas. Recent developments and results performed within the EU-funded project FUMAPEX on integrated systems for forecasting urban meteorology and air pollution are reported here. Sensitivity studies with respect to optimum resolution, parametrisation of urban roughness and surface exchange fluxes and the role of urban soil layers are carried out with advanced meso- or sub-meso meteorological models. They show that sensible improvements can be achieved by higher model resolution that is accompanied with better description of urban surface features. Recommendations, especially with respect to advanced urban air quality forecasting and information systems, are given together with an assessment of the needed further research and data. ■ <u>Final Revised Paper</u> (PDF, 3924 KB) ■ <u>Discussion Paper</u> (ACPD) Citation: Baklanov, A., Mestayer, P. G., Clappier, A., Zilitinkevich, S., Joffre, S., Mahura, A., and Nielsen, N. W.: Towards improving the simulation of meteorological fields in urban areas through updated/advanced surface fluxes description, Atmos. Chem. Phys., 8, 523-543, 2008. ■ Bibtex ■ EndNote ■ Reference Manager Library Search Author Search - Sister Journals AMT & GMD - Financial Support for Authors - Journal Impact Factor - Public Relations & **Background Information** ### Recent Papers 01 | ACPD, 03 Nov 2008: Anthropogenic influence on SOA and the resulting radiative forcing 02 | ACPD, 03 Nov 2008: Evidence of mineral dust altering cloud microphysics and precipitation 03 | ACPD, 03 Nov 2008: Technical Note: A new method for the Lagrangian tracking of pollution plumes from source to receptor using gridded model output 04 | ACPD, 03 Nov 2008: