Atmospheric Chemistry and Physics

under the Creative Commons Attribution 3.0 License.

An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

ISI indexed

PORTICO

Tolumes and Issues Contents of Issue 12 Special Issue Atmos. Chem. Phys., 8, 3231-3246, 2008 www.atmos-chem-phys.net/8/3231/2008/

© Author(s) 2008. This work is distributed

Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations

B. Barret^{1,2}, P. Ricaud^{1,2}, C. Mari^{1,2}, J.-L. Attié^{1,2}, N. Bousserez^{1,2}, B. Josse³, E. Le Flochmoën^{1,2}, N. J. Livesey⁵, S. Massart⁴, V.-H. Peuch³, A. Piacentini⁴, B. Sauvage^{1,2}, V. Thouret^{1,2}, and J.-P. Cammas^{1,2}

¹Université de Toulouse, Laboratoire d'Aérologie, Toulouse, France

²CNRS UMR 5560, Toulouse, France

³CNRM-GAME, Météo-France and CNRS URA 1357, Toulouse, France

⁴CERFACS, Toulouse, France

⁵Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Abstract. The transport pathways of carbon monoxide (CO) in the African Upper Troposphere (UT) during the West African Monsoon (WAM) is investigated through the assimilation of CO observations by the Aura Microwave Limb Sounder (MLS) in the MOCAGE Chemistry Transport Model (CTM). The assimilation setup, based on a 3-D First Guess at Assimilation Time (3-D-FGAT) variational method is described. Comparisons between the assimilated CO fields and in situ airborne observations from the MOZAIC program between Europe and both Southern Africa and Southeast Asia show an overall good agreement around the lowermost pressure level sampled by MLS (~215 hPa). The 4-D assimilated fields averaged over the month of July 2006 have been used to determine the main dynamical processes responsible for the transport of CO in the African UT. The studied period corresponds to the second AMMA (African Monsoon Multidisciplinary Analyses) aircraft campaign. At 220 hPa, the CO distribution is characterized by a latitudinal maximum around 5° N mostly driven by convective uplift of air masses impacted by biomass burning from Southern Africa, uplifted within the WAM region and vented predominantly southward by the upper branch of the winter hemisphere Hadley cell. Above 150 hPa, the African CO distribution is characterized by a broad maximum over northern Africa. This maximum is mostly controlled by the large scale UT circulation driven by the Asian Summer Monsoon (ASM) and characterized by the Asian Monsoon Anticyclone (AMA) centered at 30° N and the Tropical Easterly Jet (TEJ) on the southern flank of the anticyclone. Asian pollution uplifted to the UT over large region of Southeast Asia is trapped within the AMA and transported by the anticyclonic circulation over Northeast Africa. South of the AMA, the TEJ is responsible for the tranport of CO-enriched air masses from India and Southeast Asia over Africa. Using the high time resolution provided by the 4-D assimilated fields, we give evidence that the variability of the African CO distribution above 150 hPa and north of the WAM region is mainly driven by the synoptic dynamical

■ Final Revised Paper (PDF, 661 KB) ■ Discussion Paper (ACPD)

variability of both the AMA and the TEJ.

Search ACP

Library Search
Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 11 Nov 2008: Influence of future air pollution mitigation strategies on total aerosol radiative forcing

02 | ACP, 10 Nov 2008: Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe

03 | ACP, 10 Nov 2008: Organic composition of carbonaceous aerosols in an aged prescribed fire plume Citation: Barret, B., Ricaud, P., Mari, C., Attié, J.-L., Bousserez, N., Josse, B., Le Flochmoën, E., Livesey, N. J., Massart, S., Peuch, V.-H., Piacentini, A., Sauvage, B., Thouret, V., and Cammas, J.-P.: Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations, Atmos. Chem. Phys., 8, 3231-3246, 2008. ■ Bibtex ■ EndNote ■ Reference Manager