Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union | Copernicus.org | EGU.eu | | EGU Journals | Contact ## Online Library ACP - Recent Final Revised **Papers** - Volumes and Issues - Special Issues - Library Search - Title and Author Search Online Library ACPD Alerts & RSS Feeds General Information Submission Production Subscription ## Comment on a Paper lindexed ■ Volumes and Issues ■ Contents of Issue 13 Atmos. Chem. Phys., 7, 3579-3586, 2007 www.atmos-chem-phys.net/7/3579/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR T. Brauers¹, J. Bossmeyer^{1,*}, H.-P. Dorn¹, E. Schlosser¹, R. Tillmann¹, R. Wegener¹, and A. Wahner¹ ¹Institut für Chemie und Dynamik der Geosphäre (ICG-II: Troposphäre), Forschungszentrum Jülich, Germany now at: Cohausz & Florack, Düsseldorf, Germany Abstract. The results from a simulation chamber study on the formaldehyde (HCHO) absorption cross section in the UV spectral region are presented. We performed 4 experiments at ambient HCHO concentrations with simultaneous measurements of two DOAS instruments in the atmosphere simulation chamber SAPHIR in Jülich. The two instruments differ in their spectral resolution, one working at 0.2 nm (broad-band, BB-DOAS), the other at 2.7 pm (high-resolution, HR-DOAS). Both instruments use dedicated multi reflection cells to achieve long light path lengths of 960 m and 2240 m, respectively, inside the chamber. During two experiments HCHO was injected into the clean chamber by thermolysis of well defined amounts of para-formaldehyde reaching mixing rations of 30 ppbV at maximum. The HCHO concentration calculated from the injection and the chamber volume agrees with the BB-DOAS measured value when the absorption cross section of Meller and Moortgat (2000) and the temperature coefficient of Cantrell (1990) were used for data evaluation. In two further experiments we produced HCHO in-situ from the ozone + ethene reaction which was intended to provide an independent way of HCHO calibration through the measurements of ozone and ethene. However, we found an unexpected deviation from the current understanding of the ozone + ethene reaction when CO was added to suppress possible oxidation of ethene by OH radicals. The reaction of the Criegee intermediate with CO could be 240 times slower than currently assumed. Based on the BB-DOAS measurements we could deduce a highresolution cross section for HCHO which was not measured directly so far. ■ Final Revised Paper (PDF, 781 KB) ■ Discussion Paper (ACPD) Citation: Brauers, T., Bossmeyer, J., Dorn, H.-P., Schlosser, E., Tillmann, R., Wegener, R., and Wahner, A.: Investigation of the formaldehyde differential absorption cross section at high and low spectral resolution in the simulation chamber SAPHIR, Atmos. Chem. Phys., 7, 3579-3586, 2007. ■ Bibtex ■ EndNote ■ Reference Manager Library Search Author Search - Sister Journals AMT & GMD - Financial Support for Authors - Journal Impact Factor - Public Relations & **Background Information** ## Recent Papers 01 | ACP, 11 Nov 2008: Influence of future air pollution mitigation strategies on total aerosol radiative forcing 02 | ACP, 10 Nov 2008: Airborne in-situ measurements of vertical, seasonal and latitudinal distributions of carbon dioxide over Europe 03 | ACP, 10 Nov 2008: Organic composition of carbonaceous aerosols in an aged prescribed fire plume