Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

Volumes and Issues
Contents of Issue 14
Atmos. Chem. Phys., 8, 3899-3917, 2008
www.atmos-chem-phys.net/8/3899/2008/
Author(s) 2008. This work is distributed
under the Creative Commons Attribution 3.0 License.

Observations of HNO_3 , ΣAN , ΣPN and NO_2 fluxes: evidence for rapid HO_x chemistry within a pine forest canopy

D. K. Farmer¹ and R. C. Cohen^{1,2,3}

¹Department of Chemistry, University of California Berkeley, Berkeley, CA, USA ²Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA

³Energy and Environment Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract. Measurements of exchange of reactive nitrogen oxides between the atmosphere and a ponderosa pine forest in the Sierra Nevada Mountains are reported. During winter, we observe upward fluxes of NO₂, and downward fluxes of total peroxy and peroxy acyl nitrates (SPNs), total gas and particle phase alkyl and multifunctional alkyl nitrates $(\Sigma ANs_{(q+p)})$, and the sum of gaseous HNO3 and semi-volatile NO3 particles (HNO3 (q+p)). We use calculations of the vertical profile and flux of NO, partially constrained by observations, to show that net midday ΣNO_{vi} fluxes in winter are -4.9 ppt m s⁻¹. The signs and magnitudes of these wintertime individual and ΣNO_{vi} fluxes are in the range of prior measurements. In contrast, during summer, we observe downward fluxes only of $\Sigma ANs_{(q+p)}$, and upward fluxes of $HNO_{3(q+p)'}$ ΣPNs and NO_2 with signs and magnitudes that are unlike most, if not all, previous observations and analyses of fluxes of individual nitrogen oxides. The results imply that the mechanisms contributing to NO_v fluxes, at least at this site, are much more complex than previously recognized. We show that the observations of upward fluxes of $HNO_{3(q+p)}$ and σPNs during summer are consistent with oxidation of NO₂ and acetaldehyde by an OH x residence time of 1.1×10^{10} molec OH cm^{-3} s, corresponding to 3 to 16×10^7 molecules cm^{-3} OH within the forest canopy for a 420 to 70 s canopy residence time. We show that $\Sigma AN_{(q+p)}$ fluxes are consistent with this range in OH if the reaction of OH with Σ ANs produces either HNO_3 or NO_2 with a 6–30% yield. Calculations of NO fluxes constrained by the NO2 observations and the inferred OH indicate that NOx fluxes are downward into the canopy because of the substantial conversion of NO_{x} to HNO_{3} and σPNs in the canopy. Even so, we derive that NO_x emission fluxes of ~15 ng(N) m⁻² s⁻¹ at midday during summer are required to balance the $\mathrm{NO}_{\rm X}$ and $\mathrm{NO}_{\rm V}$ flux budgets. These fluxes are partly explained by estimates of soil emissions (estimated to be between 3 and 6 ng(N) m⁻² s⁻¹). One possibility for the remainder of the NO_x source is large HONO emissions. Alternatively, the 15 ng(N) $m^{-2} s^{-1}$ emission estimate may be too large, and the budget balanced if the deposition of HNO_3 and σPNs is slower than we estimate, if there are large errors in either our understanding of peroxy radical chemistry, or our assumptions that the budget is required to balance because the fluxes do not obey similarity theory.

| EGU Journals | Contact

Search ACP	
Library Search	•
Author Search	•

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 14 Nov 2008: SCIAMACHY formaldehyde observations: constraint for isoprene emissions over Europe?

02 | ACPD, 14 Nov 2008: Observation of nitrate coatings on atmospheric mineral dust particles

03 | ACP, 14 Nov 2008: FRESCO+: an improved O_2 Aband cloud retrieval algorithm for tropospheric trace gas retrievals

04 | ACPD, 14 Nov 2008:

■ <u>Final Revised Paper</u> (PDF, 437 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Farmer, D. K. and Cohen, R. C.: Observations of HNO₃, ΣAN, ΣPN and NO₂ fluxes: evidence for rapid HO_x chemistry within a pine forest canopy, Atmos. Chem. Phys., 8, 3899-3917, 2008. ■ <u>Bibtex</u> ■ <u>EndNote</u> ■ <u>Reference Manager</u>