

PORTICO

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

Impact of the new HNO₃-forming channel of the HO_2 +NO reaction on tropospheric HNO₃, NO_x, HO_x

¹Centre Européen de Recherche et Formation Avancée en Calcul Scientifique, ³Institute for Climate and Atmospheric Science, School of Earth and Environment, ⁴Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, Abstract. We have studied the impact of the recently observed reaction $NO+HO_2 \rightarrow HNO_3$ on atmospheric chemistry. A pressure and temperature-

 $NO+HO_2 \rightarrow NO_2+OH$ reaction has been included in both a 2-D stratospheretroposphere model and a 3-D tropospheric chemical transport model (CTM).

Significant effects on the nitrogen species and hydroxyl radical concentrations are found throughout the troposphere, with the largest percentage changes occurring in the tropical upper troposphere (UT). Including the reaction leads to a reduction in NO_x everywhere in the troposphere, with the largest decrease of 25% in the tropical and Southern Hemisphere UT. The tropical UT also has a corresponding large increase in HNO₃ of 25%. OH decreases throughout the troposphere with the largest reduction of over 20% in the tropical UT. The mean global decrease in OH is around 13%, which is very large compared to the impact that typical photochemical revisions have on this modelled quantity. This OH decrease leads to an increase in CH_4 lifetime of 5%. Due to the impact of decreased NO_x on the OH: HO₂ partitioning, modelled HO₂ actually increases in the tropical UT on including the new reaction. The impact on tropospheric ozone is a decrease in the range 5 to 12%, with the largest impact in the tropics and Southern Hemisphere. Comparison with observations shows that in the region of largest changes, i.e. the tropical UT, the inclusion of the new reaction tends to degrade the model agreement. Elsewhere the model comparisons are not able to critically assess the impact of including this reaction. Only small changes are calculated in the minor species distributions in the stratosphere.

■ Final Revised Paper (PDF, 3116 KB) ■ Discussion Paper (ACPD)

Citation: Cariolle, D., Evans, M. J., Chipperfield, M. P., Butkovskaya, N.,

| EGU Journals | Contact

Copernicus Publications The Innovative Open Access Publish

Search ACP	
Library Search	•
Author Search	•

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 14 Nov 2008: SCIAMACHY formaldehyde observations: constraint for isoprene emissions over Europe?

02 | ACPD, 14 Nov 2008: Observation of nitrate coatings on atmospheric mineral dust particles

03 | ACP, 14 Nov 2008: FRESCO+: an improved O2 Aband cloud retrieval algorithm for tropospheric trace gas retrievals

04 | ACPD, 14 Nov 2008:

Kukui, A., and Le Bras, G.: Impact of the new HNO_3 -forming channel of the HO_2 +NO reaction on tropospheric HNO_3 , NO_x , HO_x and ozone, Atmos. Chem. Phys., 8, 4061-4068, 2008. Bibtex EndNote Reference Manager