Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

Copernicus.org | EGU.eu

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

indexed

■ Volumes and Issues
■ Contents of Issue 2

Atmos. Chem. Phys., 7, 495-509, 2007 www.atmos-chem-phys.net/7/495/2007/
© Author(s) 2007. This work is licensed under a Creative Commons License.

Investigations of the photochemical isotope equilibrium between O_2 , CO_2 and O_3

R. Shaheen^{1,2}, C. Janssen^{1,3}, and T. Röckmann^{1,4}

¹Max-Planck-Institute for Nuclear Physics, Division of Atmospheric Physics, 69117 Heidelberg, Germany

²University of California San Diego, Department of Chemistry, La Jolla, USA ³Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique, Université Pierre et Marie Curie/CNRS, 75252 Paris, France

⁴Institute for Marine and Atmospheric Research Utrecht, Utrecht University, The Netherlands

Abstract. Contrary to tropospheric CO₂ whose oxygen isotopic composition follows a standard mass dependent relationship, i.e. δ^{17} O~0.5 δ^{18} O, stratospheric CO₂ is preferentially enriched in ¹⁷O, leading to a strikingly different relation: $\delta^{17}\text{O}{\scriptstyle\sim}1.7\delta^{18}\text{O}.$ It has been shown repeatedly that the isotope anomaly is inherited from O_3 via photolytically produced $O(^1D)$ that undergoes isotope exchange with CO₂ and the anomaly may well serve as a tracer of stratospheric chemistry if details of the exchange mechanism are understood. We have studied the photochemical isotope equilibrium in UV-irradiated O₂-CO₂ and O₃-CO₂ mixtures to quantify the transfer of the anomaly from O₃ to CO₂ at room temperature. By following the time evolution of the oxygen isotopic compositions of ${\rm CO_2}$ and ${\rm O_2}$ under varying initial isotopic compositions of both, O_2/O_3 and CO_2 , the isotope equilibria between the two reservoirs were determined. A very strong dependence of the isotope equilibrium on the O₂/CO₂-ratio was established. Equilibrium enrichments of $^{17}\mathrm{O}$ and $^{18}\mathrm{O}$ in CO_2 relative to O_2 diminish with increasing CO₂ content, and this reduction in the equilibrium enrichments does not follow a standard mass dependent relation. When molecular oxygen exceeds the amount of CO₂ by a factor of about 20, ¹⁷O and ¹⁸O in equilibrated CO_2 are enriched by $(142\pm4)\%$ and $(146\pm4)\%$, respectively, at room temperature and at a pressure of 225 hPa, independent of the initial isotopic compositions of CO₂ and O₂ or O₃. From these findings we derive a simple and general relation between the starting isotopic compositions and amounts of O_2 and CO_2 and the observed slope in a three oxygen isotope diagram. Predictions from this relation are compared with published laboratory and atmospheric data.

■ Final Revised Paper (PDF, 571 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Shaheen, R., Janssen, C., and Röckmann, T.: Investigations of the photochemical isotope equilibrium between O_2 , CO_2 and O_3 , Atmos. Chem. Phys., 7, 495-509, 2007. Bibtex EndNote Reference Manager

Search ACP

Library Search

Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

O1 | ACPD, 28 Nov 2008: Estimating surface CO_2 fluxes from space-borne CO_2 dry air mole fraction observations using an ensemble Kalman Filter

02 | ACPD, 28 Nov 2008: Comparison of tropospheric chemistry schemes for use within global models

 $03\mid ACP,\ 28\ Nov\ 2008:$ Measurements of HNO_3 and N_2O_5 using ion drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign