
Volumes and Issues Contents of Issue 16

and associated global climate change requires an adequate understanding of the CO₂ sources and sinks. The sparseness of the existing surface measurement network limits current knowledge about the global distribution of CO₂ surface fluxes. The retrieval of CO₂ total vertical columns from satellite observations is predicted to improve this situation. Such an application however requires very high accuracy and precision. We report on retrievals of the column-averaged CO₂ dry air mole fraction, denoted XCO₂, from the near-infrared nadir spectral radiance and solar irradiance measurements of the SCIAMACHY satellite instrument between 2003 and 2005. We focus on northern hemispheric large scale CO₂ features such as the CO₂ seasonal cycle and show - for the first time - that the atmospheric annual increase of CO2 can be directly observed using satellite measurements of the CO2 total column. The satellite retrievals are compared with global XCO₂ obtained from NOAA's CO₂ assimilation system CarbonTracker taking into account the spatio-temporal sampling and altitude sensitivity of the satellite data. We show that the measured CO₂ year-to-year increase agrees within about 1 ppm/year with CarbonTracker. We also show that the latitude dependent amplitude of the northern hemispheric CO₂ seasonal cycle agrees with CarbonTracker within about 2 ppm with the retrieved amplitude being systematically larger. The analysis demonstrates that it is possible using satellite measurements of the CO₂ total column to retrieve information on the atmospheric CO2 on the level of

Final Revised Paper (PDF, 710 KB) Discussion Paper (ACPD) Corrigendum

a few parts per million.

Citation: Buchwitz, M., Schneising, O., Burrows, J. P., Bovensmann, H., Reuter, M., and Notholt, J.: First direct observation of the atmospheric CO₂ year-to-year increase from space, Atmos. Chem. Phys., 7, 4249-4256, 2007. <u>Bibtex</u> <u>EndNote</u> <u>Reference Manager</u> | EGU Journals | Contact

Copernicus Publications

Search ACP	
Library Search	•
Author Search	•

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 17 Dec 2008: Characterizing ozone production and response under different meteorological conditions in Mexico City

02 | ACP, 17 Dec 2008: Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific region

03 | ACP, 17 Dec 2008: Carbonyl sulfide in air extracted from a South Pole ice core: a 2000 year record

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

