Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 17 Atmos. Chem. Phys., 7, 4675-4698, 2007 www.atmos-chem-phys.net/7/4675/2007/ © Author(s) 2007. This work is licensed

under a Creative Commons License.

| Copernicus.org | EGU.eu |

A new atmospheric aerosol phase equilibrium model (UHAERO): organic systems

N. R. Amundson¹, A. Caboussat¹, J. W. He¹, A. V. Martynenko¹, C. Landry², C. Tong³, and J. H. Seinfeld³ ¹Department of Mathematics, University of Houston, Houston, USA ²Chaire d'Analyse et Simulation Numériques, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ³Departments of Chemical Engineering and Environmental Science and Engineering, California Institute of Technology, Pasadena, USA

Abstract. In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c) to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored.

■ Final Revised Paper (PDF, 2136 KB) ■ Discussion Paper (ACPD)

Citation: Amundson, N. R., Caboussat, A., He, J. W., Martynenko, A. V., Landry, C., Tong, C., and Seinfeld, J. H.: A new atmospheric aerosol phase equilibrium model (UHAERO): organic systems, Atmos. Chem. Phys., 7, 4675-4698, 2007. Bibtex EndNote Reference Manager | EGU Journals | Contact

Search ACP Library Search Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 18 Dec 2008: Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NO_x produced by low energy electrons

02 | ACP, 18 Dec 2008: Aircraft and ground-based measurements of hydroperoxides during the 2006 MILAGRO field campaign

03 | ACPD, 18 Dec 2008: Integrated water vapor above Ny Ålesund, Spitsbergen: a multisensor intercomparison