

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 1 Atmos. Chem. Phys., 5, 77-83, 2005 www.atmos-chem-phys.net/5/77/2005/ @ Author(a) 2005. This work is licensed

© Author(s) 2005. This work is licensed under a Creative Commons License.

Heterogeneous conversion of NO₂ and NO on HNO₃ treated soot surfaces: atmospheric implications

J. Kleffmann and P. Wiesen

Physikalische Chemie/FB C, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany

Abstract. In the present study, the heterogeneous conversion of nitrogen oxide (NO) and nitrogen dioxide (NO_2) was studied at atmospheric

humidity levels on flame soot surfaces treated with gaseous nitric acid (HNO_3) . In addition, the heterogeneous reaction of HNO_3 on soot was investigated at atmospheric humidity.

For the treatment of soot by pure HNO₃ only reversible uptake with a surface coverage of ~1-2x10¹⁴ HNO₃ cm⁻² was observed for HNO₃ mixing ratios in the range 250-800ppbv. Only for higher HNO₃ mixing ratios of >800ppbv the formation of NO and NO₂ was observed. The results were not affected by the addition of NO. In none of the experiments with HNO₃ the formation of nitrous acid (HONO) was observed. For HNO₃ mixing ratios <600ppbv the upper limit yields for HONO, NO₂ and NO were found to be <0.2%, <0.5% and <1%, respectively. Compared to untreated soot, the product formation of the reaction of NO₂ with soot was not significantly affected when the soot surface was treated with gaseous HNO₃ prior to the experiment. Only for high surface coverage of HNO₃ the formation of HONO was suppressed in the initial phase of the reaction, probably caused by the blocking of active sites by adsorbed HNO₃.

Under the assumption that the experimental findings for the used model flame soot can be extrapolated to atmospheric soot particles, the results show that the reactions of HNO_3 and HNO_3 +NO on soot surfaces are unimportant for a "renoxification" of the atmosphere and do not represent an atmospheric HONO source. In addition, the integrated HONO yield of ca. 10^{14} cm⁻² in the reaction of NO_2 with soot is not significantly influenced by simulated atmospheric processing of the soot surface by HNO_3 , and is still too small to explain HONO formation in the atmosphere.

■ Final Revised Paper (PDF, 250 KB) ■ Discussion Paper (ACPD)

Citation: Kleffmann, J. and Wiesen, P.: Heterogeneous conversion of NO₂ and NO on HNO₃ treated soot surfaces: atmospheric implications, Atmos. Chem. Phys., 5, 77-83, 2005.
Bibtex EndNote Reference Manager

| EGU Journals | Contact

Search ACP	
Library Search	•
Author Search	•

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 04 Feb 2009: Reinterpreting aircraft measurements in anisotropic scaling turbulence

02 | ACP, 04 Feb 2009: Global temperature estimates in the troposphere and stratosphere: a validation study of COSMIC/FORMOSAT-3 measurements

03 | ACPD, 04 Feb 2009: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol