Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 3 Atmos. Chem. Phys., 4, 839-856, 2004 www.atmos-chem-phys.net/4/839/2004/ © Author(s) 2004. This work is licensed

under a Creative Commons License.

OH and HO₂ chemistry in clean marine air during SOAPEX-2

R. Sommariva ¹ , AL. Haggerstone ² , L. J. Carpenter ² , N. Carslaw ³ , D. J. Creasey ^{1,*} , D. E. Heard ¹ , J. D. Lee ^{1,**} , A. C. Lewis ^{1,**} , M. J. Pilling ¹ , and J. Zádor ⁴
¹ Department of Chemistry, University of Leeds, Leeds, UK
² Department of Chemistry, University of York, York, UK
³ Environment Department, University of York, York, UK
⁴ Department of Physical Chemistry, Eotvös University (ELTE), Budapest, Hungary
*Now at Photonic Solutions plc., Gracemount Business Pavilions Unit A2/A3, 40
Captains Rd., Edinburgh, UK
**Now at Department of Chemistry, University of York, York, UK
Abstract. Model-measurement comparisons of HO _v in extremely clean air
([NO]<3 ppt) are reported. Measurements were made during the second
Southern Ocean Photochemistry Experiment (SOAPEX-2), held in austral
summer 1999 at the Cape Grim Baseline Air Pollution Station in north-
western Tasmania, Australia.
The free-radical chemistry was studied using a zero-dimensional box-model

The free-radical chemistry was studied using a zero-dimensional box-model based upon the Master Chemical Mechanism (MCM). Two versions of the model were used, with different levels of chemical complexity, to explore the role of hydrocarbons upon free-radical budgets under very clean conditions. The "detailed" model was constrained to measurements of CO, CH_4 and 17 NMHCs, while the "simple" model contained only the CO and CH_4 oxidation mechanisms, together with inorganic chemistry. The OH and HO_2 (HO_x) concentrations predicted by the two models agreed to within 5–10%.

The model results were compared with the HO_x concentrations measured by the FAGE (Fluorescence Assay by Gas Expansion) technique during four days of clean Southern Ocean marine boundary layer (MBL) air. The models overestimated OH concentrations by about 10% on two days and about 20% on the other two days. HO₂ concentrations were measured during two of these days and the models overestimated the measured concentrations by about 40%. Better agreement with measured HO₂ was observed by using data from several MBL aerosol measurements to estimate the aerosol surface area and by increasing the HO₂ uptake coefficient to unity. This reduced the modelled HO₂ overestimate by ~40%, with little effect on OH, because of the poor HO₂ to OH conversion at the low ambient NO_x concentrations.

Local sensitivity analysis and Morris One-At-A-Time analysis were performed on the "simple" model, and showed the importance of reliable measurements of $j(O^1D)$ and [HCHO] and of the kinetic parameters that determine the efficiency of $O(^1D)$ to OH and HCHO to HO₂ conversion. A 2 σ standard deviation of 30–40% for OH and 25–30% for HO₂ was estimated | EGU Journals | Contact

Copernicus Publications

Search ACP	
Library Search	•
Author Search	•

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 26 Feb 2009: Eddy covariance methane measurements at a Ponderosa pine plantation in California

02 | ACPD, 26 Feb 2009: Discriminating low frequency components from long range persistent fluctuations in daily atmospheric temperature variability

03 | ACPD, 25 Feb 2009: Charged and total particle formation and growth rates during EUCAARI 2007 campaign in Hyytiälä for the model calculations using a Monte Carlo technique coupled with Latin Hypercube Sampling (LHS).

■ <u>Final Revised Paper</u> (PDF, 484 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Sommariva, R., Haggerstone, A.-L., Carpenter, L. J., Carslaw, N., Creasey, D. J., Heard, D. E., Lee, J. D., Lewis, A. C., Pilling, M. J., and Zádor, J.: OH and HO₂ chemistry in clean marine air during SOAPEX-2, Atmos. Chem. Phys., 4, 839-856, 2004. Bibtex EndNote Reference Manager