Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 11/12 ■ Special Issue Atmos. Chem. Phys., 4, 2553-2560, 2004 www.atmos-chem-phys.net/4/2553/2004/ © Author(s) 2004. This work is licensed

under a Creative Commons License.

Initial steps of aerosol growth

M. Kulmala¹, L. Laakso¹, K. E. J. Lehtinen¹, I. Riipinen¹, M. Dal Maso¹, T. Anttila^{1,2}, V.-M. Kerminen², U. Hõrrak^{1,3}, M. Vana^{1,3}, and H. Tammet³ ¹Department of Physical Sciences, Division of Atmospheric Sciences P.O. Box 64, FIN-00014 University of Helsinki, Finland

²Finnish Meteorological Institute, Air Quality Research Sahaajankatu 22E, FIN-00880 Helsinki, Finland

³Institute of Environmental Physics, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia

Abstract. The formation and growth of atmospheric aerosols depend on several steps, namely nucleation, initial steps of growth and subsequent mainly condensational - growth. This work focuses on the initial steps of growth, meaning the growth right after nucleation, where the interplay of curvature effects and thermodynamics has a significant role on the growth kinetics. More specifically, we investigate how ion clusters and aerosol particles grow from 1.5 nm to 20 nm (diameter) in atmospheric conditions using experimental data obtained by air ion and aerosol spectrometers. The measurements have been performed at a boreal forest site in Finland. The observed trend that the growth rate seems to increase as a function of size can be used to investigate possible growth mechanisms. Such a growth rate is consistent with a recently suggested nano-Köhler mechanism, in which growth is activated at a certain size with respect to condensation of organic vapors. The results also imply that chargeenhanced growth associated with ion-mediated nucleation plays only a minor role in the initial steps of growth, since it would imply a clear decrease of the growth rate with size. Finally, further evidence was obtained on the earlier suggestion that atmospheric nucleation and the subsequent growth of fresh nuclei are likely to be uncoupled phenomena via different participating vapors.

■ Final Revised Paper (PDF, 551 KB) ■ Discussion Paper (ACPD)

Citation: Kulmala, M., Laakso, L., Lehtinen, K. E. J., Riipinen, I., Dal Maso, M., Anttila, T., Kerminen, V.-M., Hõrrak, U., Vana, M., and Tammet, H.: Initial steps of aerosol growth, Atmos. Chem. Phys., 4, 2553-2560, 2004. Bibtex EndNote Reference Manager | EGU Journals | Contact

Search ACP	
Library Search	•
Author Search	•

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 10 Mar 2009: Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

02 | ACPD, 10 Mar 2009: Regional differences in organic composition of submicron and single particles during INTEX-B 2006

03 | ACPD, 10 Mar 2009: First steps towards the assimilation of IASI ozone data into the MOCAGE-PALM system