Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

55020 Mainz, Germany

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised **Papers**
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

indexed

■ Volumes and Issues
■ Contents of Issue 1

Atmos. Chem. Phys., 3, 119-130, 2003 www.atmos-chem-phys.net/3/119/2003/ © Author(s) 2003. This work is licensed under a Creative Commons License.

Ozone decomposition on Saharan dust: an experimental investigation

F. Hanisch and J. N. Crowley Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Postfach 3060,

Abstract. The heterogeneous reaction between O₃ and authentic Saharan dust surfaces was investigated in a Knudsen reactor at approx 296 K. O₂ was destroyed on the dust surface and O_2 was formed with conversion efficiencies of 1.0 and 1.3 molecules O₂ per O₃ molecule destroyed for unheated and heated samples, respectively. No O_3 desorbed from exposed dust samples, showing that the uptake was irreversible. The uptake coefficients for the irreversible destruction of ${\rm O}_3$ on (unheated) Saharan dust surfaces depended on the ${\rm O_3}$ concentration and varied between 3.5 x 10^{-4} and 5.5 x 10^{-6} for the initial uptake coefficient (γ_0 approx 3 x 10^{-5} at 30 ppbv O₃ STP) and between 4.8 x 10^{-5} and 2.2 x 10^{-6} for the steady-state uptake coefficient (γ_{ss} approx 7 x10⁻⁶ at 30 ppbv O₃ STP). At very high $\rm O_3$ concentrations the surface was deactivated, and $\rm O_3$ uptake ceased after a certain exposure period. Sample re-activation (i.e. de-passivation) was found to occur over periods of hours, after exposure to O₃ had ceased, suggesting that re-activation processes play a role both in the laboratory and in the atmosphere.

■ Final Revised Paper (PDF, 525 KB)
■ Discussion Paper (ACPD)

Citation: Hanisch, F. and Crowley, J. N.: Ozone decomposition on Saharan dust: an experimental investigation, Atmos. Chem. Phys., 3, 119-130, 2003. ■ Bibtex ■ EndNote ■ Reference Manager

Library Search Author Search

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & **Background Information**

Recent Papers

01 | ACPD, 10 Mar 2009: Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

02 | ACPD, 10 Mar 2009: Regional differences in organic composition of submicron and single particles during INTEX-B 2006

03 | ACPD, 10 Mar 2009: First steps towards the assimilation of IASI ozone data into the MOCAGE-PALM system