

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

- Alerts & RSS Feeds
- **General Information**

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 4

Atmos. Chem. Phys., 3, 951-967, 2003 www.atmos-chem-phys.net/3/951/2003/ © Author(s) 2003. This work is licensed under a Creative Commons License.

Physical properties and concentration of aerosol particles over the Amazon tropical forest during background and biomass burning conditions

P. Guyon¹, B. Graham¹, J. Beck¹, O. Boucher^{2,3}, E. Gerasopoulos^{1,4}, O. L. Mayol-Bracero¹, G. C. Roberts¹, P. Artaxo⁵, and M. O. Andreae¹ ¹Max Planck Institute for Chemistry, Department of Biogeochemistry, Mainz, Germany

²Max Planck Institute for Chemistry, Department of Atmospheric Chemistry, Mainz, Germany

³Laboratoire d'Optique Atmosphérique, CNRSUMR 8518, Villeneuve d'Ascq, France ⁴Nuclear Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece

⁵Institute for Physics, University of São Paulo, São Paulo, Brazil

Abstract. We investigated the size distribution, scattering and absorption properties of Amazonian aerosols and the optical thickness of the aerosol layer under the pristine background conditions typical of the wet season, as well as during the biomass-burning-influenced dry season. The measurements were made during two campaigns in 1999 as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). In moving from the wet to the dry season, median particle numbers were observed to increase from values comparable to those of the remote marine boundary layer ($\sim 400 \text{ cm}^{-3}$) to values more commonly associated with urban smog ($\sim 4000 \text{ cm}^{-3}$), due to a massive injection of submicron smoke particles. Aerosol optical depths at 500 nm increased from 0.05 to 0.8 on average, reaching a value of 2 during the dry season. Scattering and absorption coefficients, measured at 550 nm, showed a concomitant increase from average values of 6.8 and 0.4 Mm⁻¹ to values of 91 and 10 Mm⁻¹, respectively, corresponding to an estimated decrease in single-scattering albedo from ca. 0.97 to 0.91. The roughly tenfold increase in many of the measured parameters attests to the dramatic effect that extensive seasonal biomass burning (deforestation, pasture cleaning) is having on the composition and properties of aerosols over Amazonia. The potential exists for these changes to impact on regional and global climate through changes to the extinction of solar radiation as well as the alteration of cloud properties.

Final Revised Paper (PDF, 554 KB) Discussion Paper (ACPD)

Citation: Guyon, P., Graham, B., Beck, J., Boucher, O., Gerasopoulos, E., Mayol-Bracero, O. L., Roberts, G. C., Artaxo, P., and Andreae, M. O.: Physical properties and concentration of aerosol particles over the Amazon tropical forest during background and biomass burning conditions, Atmos. Chem. Phys., 3, 951-967, 2003. Bibtex EndNote Reference Manager

| EGU Journals | Contact

Search ACP Library Search Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 11 Mar 2009: Measurements of Pollution In The Troposphere (MOPITT) validation through 2006

02 | ACP, 11 Mar 2009: Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean

03 | ACPD, 10 Mar 2009: Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

04 | ACPD, 10 Mar 2009: Regional differences in