Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

| EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised **Papers**
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

lindexed

■ Volumes and Issues
■ Contents of Issue 4

Atmos. Chem. Phys., 3, 1093-1100, 2003 www.atmos-chem-phys.net/3/1093/2003/ © Author(s) 2003. This work is licensed under a Creative Commons License.

Ultrathin Tropical Tropopause Clouds (UTTCs): 11. Stabilization mechanisms

B. P. Luo¹, Th. Peter¹, H. Wernli¹, S. Fueglistaler¹, M. Wirth²,

C. Kiemle², H. Flentje², V. A. Yushkov³, V. Khattatov³, V. Rudakov³,

A. Thomas⁴, S. Borrmann⁴, G. Toci⁵, P. Mazzinghi⁶, J. Beuermann⁷,

C. Schiller⁷, F. Cairo⁸, G. Di Don-Francesco⁹, A. Adriani⁸, C. M. Volk¹⁰,

J. Strom¹¹, K. Noone¹², V. Mitev¹³, R. A. MacKenzie¹⁴, K. S. Carslaw¹⁵,

T. Trautmann¹⁶, V. Santacesaria¹⁷, and L. Stefanutti¹⁸

¹Institute for Atmospheric and Climate Science, ETH Zürich, Switzerland

²Institute for Atmospheric Physics, DLR Oberpfaffenhofen, Germany

³Central Aerological Observatory, Moscow, Russia

⁴Institute for Atmospheric Physics, University of Mainz, Germany

⁵Quantum Electronics Institute, National Research Council (IEQ-CNR), Florence,

⁶National Institute of Applied Optics, Florence, Italy

⁷Institute I: Stratosphere, Forschungszentrum Jülich GmbH, Jülich, Germany

⁸Institute for Atmospheric Science and Climate, CNR, Roma, Italy

⁹ENEA Casaccia, Roma, Italy

¹⁰Institut für Meteorologie und Geophysik, Universität Frankfurt, Germany

¹¹Institute of Applied Environmental Research, Stockholm University, Sweden

¹²Department of Meteorology, Stockholm University, Sweden

¹³Observatoire cantonal, Neuchâtel, Switzerland

¹⁴Environmental Science Department, Lancaster University, UK

¹⁵School of the Environment, University of Leeds, UK

¹⁶Institute of Meteorology, University of Leipzig, Germany

¹⁷IROE – CNR "Nello Carrara", Firenze, Italy

¹⁸Geophysica-GEIE - "CNR", Firenze, Italy

Abstract. Mechanisms by which subvisible cirrus clouds (SVCs) might contribute to dehydration close to the tropical tropopause are not well understood. Recently Ultrathin Tropical Tropopause Clouds (UTTCs) with optical depths around 10⁻⁴ have been detected in the western Indian ocean. These clouds cover thousands of square kilometers as 200-300 m thick distinct and homogeneous layer just below the tropical tropopause. In their condensed phase UTTCs contain only 1-5% of the total water, and essentially no nitric acid. A new cloud stabilization mechanism is required to explain this small fraction of the condensed water content in the clouds and their small vertical thickness. This work suggests a mechanism, which forces the particles into a thin layer, based on upwelling of the air of some mm/s to balance the ice particles, supersaturation with respect to ice above and subsaturation below the UTTC. In situ measurements suggest that these requirements are fulfilled. The basic physical properties of this mechanism are explored by means of a single particle model. Comprehensive 1-D cloud simulations demonstrate this stabilization mechanism to be robust against rapid temperature fluctuations of +/- 0.5 K. However, rapid warming (\Delta T > 2 K) leads to evaporation of the UTTC, while rapid cooling (\Delta T < -2 K) leads to destabilization of the particles with the potential for significant dehydration below the cloud

Library Search Author Search

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & **Background Information**

Recent Papers

01 | ACP, 11 Mar 2009: Measurements of Pollution In The Troposphere (MOPITT) validation through 2006

02 | ACP, 11 Mar 2009: Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean

03 | ACPD, 10 Mar 2009: Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

04 | ACPD, 10 Mar 2009: Regional differences in

■ Final Revised Paper (PDF, 1135 KB) ■ Discussion Paper (ACPD)

Citation: Luo, B. P., Peter, Th., Wernli, H., Fueglistaler, S., Wirth, M., Kiemle, C., Flentje, H., Yushkov, V. A., Khattatov, V., Rudakov, V., Thomas, A., Borrmann, S., Toci, G., Mazzinghi, P., Beuermann, J., Schiller, C., Cairo, F., Di Don-Francesco, G., Adriani, A., Volk, C. M., Strom, J., Noone, K., Mitev, V., MacKenzie, R. A., Carslaw, K. S., Trautmann, T., Santacesaria, V., and Stefanutti, L.: Ultrathin Tropical Tropopause Clouds (UTTCs): II. Stabilization mechanisms, Atmos. Chem. Phys., 3, 1093-1100, 2003. Bibtex FindNote