

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 5 Atmos. Chem. Phys., 3, 1409-1419, 2003 www.atmos-chem-phys.net/3/1409/2003/

www.atmos-chem-phys.net/3/1409/2003/
© Author(s) 2003. This work is licensed under a Creative Commons License.

Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996–2000

K. Bramstedt¹, J. Gleason², D. Loyola³, W. Thomas³, A. Bracher¹, M. Weber¹, and J. P. Burrows¹ ¹Institute of Environmental Physics, University of Bremen, Bremen, Germany ²NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA ³DLR Remote Sensing Technology Institute (DLR/IMF), Wessling, Germany

Abstract. Over the last 3 decades, satellite data have been used to monitor long-term global changes in stratospheric ozone. The TOMS series (1978-present) and GOME (1995-present) are two very important instruments in this context. In this paper, TOMS total ozone and three approaches to derive total ozone from GOME measurements are validated with ground-based Dobson network data. Beyond the operational products of both instruments, e.g. TOMS version 7 and GOME Data Processor version 2.7, total ozone is calculated by integrating FURM ozone profiles and by applying the TOMS algorithm to the GOME spectra. All algorithms show in general good agreement with ground-based measurements. The operational GOME total ozone shows seasonal variations, most likely introduced by difficulties in the derivation of airmass factors, which convert measured slant columns into vertical columns. The TOMS algorithm estimates on average 2% higher total ozone in the southern hemisphere than in the northern for both instruments as compared to the groundbased data, indicating that the source of the observed hemispheric differences is in the TOMS algorithm. Both instruments show aging effects in 2000, leading to enhanced variability in the ozone column differences with respect to Dobson data. In addition, the integrated GOME ozone profiles and the TOMS algorithm applied to GOME data show larger mean deviations in 2000.

■ Final Revised Paper (PDF, 612 KB) ■ Discussion Paper (ACPD)

Citation: Bramstedt, K., Gleason, J., Loyola, D., Thomas, W., Bracher, A., Weber, M., and Burrows, J. P.: Comparison of total ozone from the satellite instruments GOME and TOMS with measurements from the Dobson network 1996–2000, Atmos. Chem. Phys., 3, 1409-1419, 2003. Bibtex EndNote Reference Manager | EGU Journals | Contact

Search ACP

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 11 Mar 2009: Measurements of Pollution In The Troposphere (MOPITT) validation through 2006

02 | ACP, 11 Mar 2009: Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean

03 | ACPD, 10 Mar 2009: Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

04 | ACPD, 10 Mar 2009: Regional differences in