Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

| Copernicus.org | EGU.eu |

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 5 Atmos. Chem. Phys., 3, 1769-1778, 2003 www.atmos-chem-phys.net/3/1769/2003/ © Author(s) 2003. This work is licensed

under a Creative Commons License.

The North Atlantic Oscillation controls air pollution transport to the Arctic

S. Eckhardt¹, A. Stohl^{1,4}, S. Beirle², N. Spichtinger¹, P. James¹, C. Forster¹, C. Junker³, T. Wagner², U. Platt², and S. G. Jennings³ ¹Department of Ecology, Technical University of Munich, Germany ²Institute of Environmental Physics, Heidelberg University, Germany ³Department of Experimental Physics, National University of Ireland, Ireland ⁴now at Cooperative Institute for Research in Environmental Sciences, University of Colorado/NOAA Aeronomy Laboratory, USA

Abstract. This paper studies the interannual variability of pollution pathways from northern hemisphere (NH) continents into the Arctic. Using a 15-year model simulation of the dispersion of passive tracers representative of anthropogenic emissions from NH continents, we show that the North Atlantic Oscillation (NAO) exerts a strong control on the pollution transport into the Arctic, particularly in winter and spring. For tracer lifetimes of 5 (30) days, surface concentrations in the Arctic winter are enhanced by about 70% (30%) during high phases of the NAO (in the following referred to as NAO⁺) compared to its low phases (NAO⁻). This is mainly due to great differences in the pathways of European pollution during NAO⁺ and NAO⁻ phases, respectively, but reinforced by North American pollution, which is also enhanced in the Arctic during NAO⁺ phases. In contrast, Asian pollution in the Arctic does not significantly depend on the NAO phase. The model results are confirmed using remotely-sensed NO₂ vertical atmospheric columns obtained from seven years of satellite measurements, which show enhanced northward NO₂ transport and reduced NO₂ outflow into the North Atlantic from Central

Europe during NAO⁺ phases. Surface measurements of carbon monoxide (CO) and black carbon at high-latitude stations further corroborate the overall picture of enhanced Arctic pollution levels during NAO⁺ phases

■ Final Revised Paper (PDF, 753 KB) ■ Discussion Paper (ACPD)

Citation: Eckhardt, S., Stohl, A., Beirle, S., Spichtinger, N., James, P., Forster, C., Junker, C., Wagner, T., Platt, U., and Jennings, S. G.: The North Atlantic Oscillation controls air pollution transport to the Arctic, Atmos. Chem. Phys., 3, 1769-1778, 2003. Bibtex EndNote Reference Manager | EGU Journals | Contact

Search ACP

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACP, 11 Mar 2009: Measurements of Pollution In The Troposphere (MOPITT) validation through 2006

02 | ACP, 11 Mar 2009: Air-sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean

03 | ACPD, 10 Mar 2009: Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms

04 | ACPD, 10 Mar 2009: Regional differences in