
Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

Volumes and Issues Contents of Issue 3

The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest

X. Xu^{1,*}, H. G. Bingemer¹, and U. Schmidt¹ ¹Institute for Meteorology and Geophysics, University of Frankfurt, P.O. Box 111932, 60054 Frankfurt am Main, Germany

^{*}now at Max Planck Institute for Chemistry, Mainz, Germany

Abstract. Turbulent fluxes of carbonyl sulfide (COS) and carbon disulfide (CS_2) were measured over a spruce forest in Central Germany using the relaxed eddy accumulation (REA) technique. A REA sampler was developed and validated using simultaneous measurements of CO_2 fluxes by REA and by eddy correlation. REA measurements were conducted during six campaigns covering spring, summer, and fall between 1997 and 1999. Both uptake and emission of COS and CS_2 by the forest were observed, with deposition occurring mainly during the sunlit period and emission mainly during the dark period. On the average, however, the forest acts as a sink for both gases. The average fluxes for COS and CS_2 are -93 ± 11.7 pmol

 $\rm m^{-2}~s^{-1}$ and $-18 \pm 7.6~pmol~m^{-2}~s^{-1}$, respectively. The fluxes of both gases appear to be correlated to photosynthetically active radiation and to the CO₂ and \chem{H_2O} fluxes, supporting the idea that the air-vegetation exchange of both gases is controlled by stomata. An uptake ratio COS/CO₂

of 10 \pm 1.7 pmol μ mol⁻¹ has been derived from the regression line for the correlation between the COS and CO₂ fluxes. This uptake ratio, if representative for the global terrestrial net primary production, would correspond to a sink of 2.3 \pm 0.5 Tg COS yr⁻¹.

■ <u>Final Revised Paper</u> (PDF, 186 KB) ■ <u>Discussion Paper</u> (ACPD)

Citation: Xu, X., Bingemer, H. G., and Schmidt, U.: The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest, Atmos. Chem. Phys., 2, 171-181, 2002. ■ <u>Bibtex</u> ■ <u>EndNote</u> <u>Reference</u> <u>Manager</u>

| EGU Journals | Contact

Search ACP Library Search Author Search

News

- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & Background Information

Recent Papers

01 | ACPD, 12 Mar 2009: A new insight on tropospheric methane in the Tropics – first year from IASI hyperspectral infrared observations

02 | ACPD, 11 Mar 2009: Comparison of analytical methods for HULIS measurements in atmospheric particles

03 | ACPD, 11 Mar 2009: Vertical distribution of aerosols in Mexico City during MILAGRO-2006 campaign

ARCHIVED IN PORTICO

Comment on a Paper

Online Library ACP

Recent Final Revised

Volumes and Issues

Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Special Issues

Library Search

Papers