

Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

Online Library ACP

Recent Final Revised Papers

- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD
Alerts & RSS Feeds
General Information

Subscription

Comment on a Paper

PORTICO

Inferring ozone production in an urban atmosphere using measurements of peroxynitric acid

	K. M. Spencer ¹ , D. C. McCabe ^{2,*} , J. D. Crounse ¹ , J. R. Olson ³ , J. H. Crawford ³ , A. J. Weinheimer ⁴ , D. J. Knapp ⁴ , D. D. Montzka ⁴ , C. A. Cantrell ⁴ , R. S. Hornbrook ⁴ , R. L. Mauldin III ⁴ , and P. O. Wennberg ^{2,5} ¹ Division of Chemistry and Chemical Engineering, California Institute of
	Technology, Pasadena, CA, USA ² Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
	³ NASA Langley Research Center, Hampton, VA, USA
	⁴ National Center for Atmospheric Research, Boulder, CO, USA
	⁵ Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
	[*] current address: AAAS Science & Technology Policy Fellow, United States Environmental Protection Agency, Washington, DC, USA
	Abstract. Observations of peroxynitric acid (HO ₂ NO ₂) obtained
	simultaneously with those of NO and NO_2 provide a sensitive measure of
	the ozone photochemical production rate. We illustrate this technique for
	constraining the ozone production rate with observations obtained from
	the NCAR C-130 aircraft platform during the Megacity Initiative: Local and
	Global Research Observations (MILAGRO) intensive in Mexico during the
	spring of 2006. Sensitive and selective measurements of $\mathrm{HO}_2\mathrm{NO}_2$ were
	made in situ using chemical ionization mass spectrometry (CIMS). Observations were compared to modeled HO_2NO_2 concentrations obtained
	from the NASA Langley highly-constrained photochemical time-dependent box model. The median observed-to-calculated ratio of HO_2NO_2 is 1.18. At
	NO _x levels greater than 15 ppbv, the photochemical box model
	underpredicts observations with an observed-to-calculated ratio of HO_2NO_2 of 1.57. As a result, we find that at high NO_x , the ozone
	production rate calculated using measured HO_2NO_2 is faster than predicted
	using accepted photochemistry. Inclusion of an additional HO_x source from
1	3 · · · · · · · · · · · · · · · · · · ·

- New Alert Service available
- Sister Journals AMT & GMD
- Financial Support for Authors
- Journal Impact Factor
- Public Relations & DI.
- **Background Information**

Recent Papers

01 | ACPD, 16 Jun 2009: Technical Note: New trends in column-integrated atmospheric water vapor -Method to harmonize and match long-term records from the FTIR network to radiosonde characteristics

02 | ACPD, 15 Jun 2009: Patterns of Saharan dust transport over the Atlantic: winter vs. summer, based on CALIPSO first year data

03 | ACP, 15 Jun 2009: Size resolved dust emission fluxes measured in Niger during 3 dust storms of the

■ Final Revised Paper (PDF, 519 KB) ■ Discussion Paper (ACPD)

the reaction of excited state NO_2 with H_2O or reduction in the rate constant of the reaction of OH with NO2 improves the agreement.

Citation: Spencer, K. M., McCabe, D. C., Crounse, J. D., Olson, J. R., Crawford, J. H., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Cantrell, C. A., Hornbrook, R. S., Mauldin III, R. L., and Wennberg, P. O.: Inferring ozone production in an urban atmosphere using measurements of peroxynitric acid, Atmos. Chem. Phys., 9, 3697-3707, 2009. Deliber Delibert Delibert Delibert Bibler Delibert Delibert