Atmospheric Chemistry and Physics

An Interactive Open Access Journal of the European Geosciences Union

| EGU.eu | | EGU Journals | Contact

Home

Online Library ACP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPE

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

Impact Factor 4.927

ISI indexed

ARCHIVED IN

■ Volumes and Issues
■ Contents of Issue 14

Atmos. Chem. Phys., 9, 4869-4878, 2009 www.atmos-chem-phys.net/9/4869/2009/
© Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

Technical Note: In-situ quantification of aerosol sources and sinks over regional geographical scales

G. Buzorius

Meteorology department, Naval Postgraduate School, Monterey, USA

Abstract. In order to obtain the source/sink functions for atmospheric particulates located on the planetary surface or elevated in the atmosphere; direct aerosol emission measurements are required. For this purpose, the performance of an airborne aerosol flux measurement system with an improved 3-kilometer (km) spatial resolution is evaluated in this study. Eddy covariance method was used in flux calculations. A footprint for airborne flux sampling with the increased resolution becomes comparable in area to the footprint for tower sampling (with the footprint length being 2 to 10 km). The improvement in spatial resolution allows the quantification of emission rates from individual sources located several kilometers apart such as highway segments, city blocks, and remote and industrial areas. The advantage is a moving platform that allows scanning of aerosol emissions or depositions over regional geographic scales. Airborne flux measurements with the improved spatial resolution were conducted in various environments ranging from clean to partly polluted marine to polluted continental environment with low (<500 m) mixed boundary layer heights. The upward and downward fluxes from the clean marine environment were smaller than 0.5×10^6 particles m⁻² s⁻¹ in absolute value. The effective emissions measured from a ship plume ranged from 2× 10^8 to 3×10^8 m⁻² s⁻¹, and effective fluxes measured crossing cities plumes with populations of 10 000 to 12 000 inhabitants were in the range of 2×10^8 to 3×10^8 m⁻² s⁻¹. Correlations between heat and aerosol fluxes are evaluated.

■ Final Revised Paper (PDF, 2226 KB) ■ Discussion Paper (ACPD)

Citation: Buzorius, G.: Technical Note: In-situ quantification of aerosol sources and sinks over regional geographical scales, Atmos. Chem. Phys., 9, 4869-4878, 2009. ■ Bibtex ■ EndNote ■ Reference Manager

Search ACP

Library Search

Author Search

News

- New Alert Service available
- Sister Journals AMT & GMD
- Financial Support for Authors
- Public Relations & Background Information

Recent Papers

01 | ACP, 22 Jul 2009: NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation

02 | ACP, 22 Jul 2009: Observations of NO_x , ΣPNs , ΣANs , and HNO_3 at a Rural Site in the California Sierra Nevada Mountains: summertime diurnal cycles

03 | ACP, 22 Jul 2009: Size-dependent activation of aerosols into cloud droplets at a subarctic background site during the second Pallas