Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

| EGU.eu | | EGU Journals | Contact

Online Library ACP

- Recent Final Revised **Papers**
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library ACPD

Alerts & RSS Feeds

General Information

Submission

Production

Subscription

Comment on a Paper

lindexed

■ Volumes and Issues
■ Contents of Issue 21

Atmos. Chem. Phys., 9, 8351-8363, 2009 www.atmos-chem-phys.net/9/8351/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

Toward a general parameterization of N₂O₅ reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride

T. H. Bertram^{1,*} and J. A. Thornton¹

¹Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA *now at: Department of Chemistry, University of California San Diego, La Jolla,

Abstract. The heterogeneous reaction of ${\rm N_2O_5}$ on mixed organic-inorganic aerosol particles was investigated using an entrained aerosol flow tube coupled to a custom-built chemical ionization mass spectrometer. Laboratory results on aqueous particles confirm a strong dependence of the reactive uptake coefficient (y) on particle liquid water, for particle water concentrations below 15 M, and the molar ratio of particle water to nitrate. Measurements of γ (N₂O₅) on mixed chloride-nitrate particles indicate that the presence of trace chloride can negate the suppression of $\gamma(N_2O_5)$ at high nitrate loadings with implications for polluted coastal regions. These results are used to construct a new parameterization for γ (N_2O_5), that when coupled to an aerosol thermodynamics model, can be used within regional and/or global chemical transport models.

■ Final Revised Paper (PDF, 935 KB)
■ Discussion Paper (ACPD)

Citation: Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of $\mathrm{N}_2\mathrm{O}_5$ reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys., 9, 8351-8363, 2009. ■ Bibtex ■ EndNote ■ Reference Manager

Library Search Author Search

- Sister Journals AMT & GMD
- Public Relations & **Background Information**

Recent Papers

01 | ACPD, 19 Nov 2009: Tropospheric photooxidation of CF₃CH₂CHO and CF₃(CH₂) CHO initiated by Cl atoms and OH radicals

02 | ACP, 19 Nov 2009: Regional N₂O fluxes in Amazonia derived from aircraft vertical profiles

03 | ACP, 19 Nov 2009: Application of φ-IASI to IASI: retrieval products evaluation and radiative transfer consistency

04 | ACPD, 18 Nov 2009: