| EGU.eu | | EGU Journals | Contact

Home

Online Library CP

- Recent Final Revised Papers
- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library CPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

ISI indexed

ARCHIVED IN

Volumes and Issues ☐ Contents of Issue 3 ☐ Special Issue Clim. Past, 5, 431-440, 2009

www.clim-past.net/5/431/2009/

© Author(s) 2009. This work is distributed

under the Creative Commons Attribution 3.0 License.

Climate and ${\rm CO_2}$ modulate the ${\rm C_3/C_4}$ balance and ${\bf \delta^{13}}{\rm C}$ signal in simulated vegetation

O. Flores¹, E. S. Gritti^{1,2}, and D. Jolly²

¹CEFE, UMR 5175 CNRS, 1919, route de Mende, 34293, Montpellier cedex 5, France

 2 ISEM, UMR 5554 CNRS/Univ. Montpellier II, Case 61, 34095 Montpellier cedex 5, France

Abstract. Climate and atmospheric CO₂ effects on the balance between C₃ and C_A plants have received conflicting interpretations based on the analysis of carbon isotopic fractionation (δ^{13} C) in sediments. But, climate and CO_2 effects on the C_3/C_4 balance and $\delta^{13}C$ signal are rarely addressed together. Here, we use a process-based model (BIOME4) to disentangle these effects. We simulated the vegetation response to climate and CO₂ atmospheric concentration (pCO₂) in two sites in which vegetation changed oppositely, with respect to C₃ and C₄ plants abundance, during the Last Glacial Maximum to Holocene transition. The $\text{C}_{\text{\tiny 3}}/\text{C}_{\text{\tiny 4}}$ balance and $\delta^{13}\text{C}$ signal were primarily sensitive to temperature and CO₂ atmospheric partial pressure. The simulated variations were in agreement with patterns observed in palaeorecords. Water limitation favoured C_{Δ} plants in case of large negative deviation in rainfall. Although a global parameter, pCO_2 affected the $\delta^{13}C$ signal differently from one site to the other because of its effects on the $\mathrm{C}_3/\mathrm{C}_4$ balance and on carbon isotopic fractionation in ${\rm C}_3$ and ${\rm C}_4$ plants. Simulated Plant functional types (PFT) also differed in their composition and response from one site to the other. The C_3/C_4 balance involved different competing C_3 and C_4 PFT, and not homogeneous C_3 and C_4 poles as often assumed. Process-based vegetation modelling emphasizes the need to account for multiple factors when a palaeo- δ^{13} C signal is used to reconstruct the C_3/C_4 balance.

■ Final Revised Paper (PDF, 854 KB) ■ Discussion Paper (CPD)

Citation: Flores, O., Gritti, E. S., and Jolly, D.: Climate and CO_2 modulate the C_3/C_4 balance and $\delta^{13}C$ signal in simulated vegetation, Clim. Past, 5, 431-440, 2009. Bibtex EndNote Reference Manager

Search CP

Library Search

Author Search

News

- Two Editors of Climate of the Past among EGU 2009 medalists
- Publications by EGU Medalists
- Online textbook in climatology available
- TWO editors of Climate of the Past funded by ERC

Recent Papers

01 | CP, 01 Dec 2009:

Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago

02 | CP, 27 Nov 2009:

Corrigendum to Preface
"Climate change: from the
geological past to the
uncertain future – a
symposium honouring André
Berger" published in Clim.
Past, 5, 707-711, 2009

03 | CPD, 27 Nov 2009:

Mountain uplift and the threshold for sustained Northern Hemisphere