| EGU.eu |

Home

Online Library CP

Recent Final Revised Papers

- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library CPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 3 ■ Special Issue Clim. Past, 5, 389-401, 2009 www.clim-past.net/5/389/2009/ © Author(s) 2009. This work is distributed

under the Creative Commons Attribution 3.0 License.

The 15th century Arctic warming in coupled model simulations with data assimilation

E. Crespin¹, H. Goosse¹, T. Fichefet¹, and M. E. Mann² ¹Université catholique de Louvain, Institut d'Astronomie et de Géophysique Georges Lemaître, Chemin du Cyclotron, 2, 1348 Louvain-la-Neuve, Belgium ²Department of Meteorology, Department of Geosciences, and Earth and Environmental Systems Institute, Pennsylvania State University, University Park, USA

Abstract. An ensemble of simulations of the climate of the past millennium conducted with a three-dimensional climate model of intermediate complexity are constrained to follow temperature histories obtained from a recent compilation of well-calibrated surface temperature proxies using a simple data assimilation technique. Those simulations provide a reconstruction of the climate of the Arctic that is compatible with the model physics, the forcing applied and the proxy records. Available observational data, proxy-based reconstructions and our model results suggest that the Arctic climate is characterized by substantial variations in surface temperature over the past millennium. Though the most recent decades are likely to be the warmest of the past millennium, we find evidence for substantial past warming episodes in the Arctic. In particular, our model reconstructions show a prominent warm event during the period 1470-1520. This warm period is likely related to the internal variability of the climate system, that is the variability present in the absence of any change in external forcing. We examine the roles of competing mechanisms that could potentially produce this anomaly. This study leads us to conclude that changes in atmospheric circulation, through enhanced southwesterly winds towards northern Europe, Siberia and Canada, are likely the main cause of the late 15th/early 16th century Arctic warming.

■ Final Revised Paper (PDF, 8499 KB) ■ Discussion Paper (CPD)

Citation: Crespin, E., Goosse, H., Fichefet, T., and Mann, M. E.: The 15th century Arctic warming in coupled model simulations with data assimilation, Clim. Past, 5, 389-401, 2009. Bibtex EndNote Reference Manager

| EGU Journals | Contact |

Search CP

Library Search	•
Author Search	₩

News

- Two Editors of Climate of the Past among EGU 2009 medalists
- Publications by EGU Medalists
- Online textbook in climatology available
- TWO editors of Climate of the Past funded by ERC

Recent Papers

01 | CP, 01 Dec 2009: Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago

02 | CP, 27 Nov 2009: Corrigendum to Preface "Climate change: from the geological past to the uncertain future – a symposium honouring André Berger" published in Clim. Past, 5, 707–711, 2009

03 | CPD, 27 Nov 2009: Mountain uplift and the threshold for sustained Northern Hemisphere