| Copernicus.org | EGU.eu |

Home

Online Library CP

Recent Final Revised Papers

- Volumes and Issues
- Special Issues
- Library Search
- Title and Author Search

Online Library CPD

Alerts & RSS Feeds

General Information

Submission

Review

Production

Subscription

Comment on a Paper

■ Volumes and Issues ■ Contents of Issue 2 ■ Special Issue Clim. Past, 3, 205-224, 2007

www.clim-past.net/3/205/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Climate of the Last Glacial Maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model

D. M. Roche¹, T. M. Dokken², H. Goosse³, H. Renssen¹, and S. L. Weber⁴ ¹Department of Palaeoclimatology and Geomorphology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

²Bjerknes Center for Climate Research, Allegaten 55, 5007 Bergen, Norway
³Institut d'Astronomie et de Géophysique G. Lemaître. 2, Chemin du Cyclotron, 1348 Louvain-la-Neuve, Belgium

⁴Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE De Bilt, The Netherlands

Abstract. The Last Glacial Maximum climate is one of the classical benchmarks used both to test the ability of coupled models to simulate climates different from that of the present-day and to better understand the possible range of mechanisms that could be involved in future climate change. It also bears the advantage of being one of the most well documented periods with respect to palaeoclimatic records, allowing a thorough data-model comparison. We present here an ensemble of Last Glacial Maximum climate simulations obtained with the Earth System model LOVECLIM, including coupled dynamic atmosphere, ocean and vegetation components. The climate obtained using standard parameter values is then compared to available proxy data for the surface ocean, vegetation, oceanic circulation and atmospheric conditions. Interestingly, the oceanic circulation obtained resembles that of the present-day, but with increased overturning rates. As this result is in contradiction with the current palaeoceanographic view, we ran a range of sensitivity experiments to explore the response of the model and the possibilities for other oceanic circulation states. After a critical review of our LGM state with respect to available proxy data, we conclude that the oceanic circulation obtained is not inconsistent with ocean circulation proxy data, although the water characteristics (temperature, salinity) are not in full agreement with water mass proxy data. The consistency of the simulated state is further reinforced by the fact that the mean surface climate obtained is shown to be generally in agreement with the most recent reconstructions of vegetation and sea surface temperatures, even at regional scales.

■ Final Revised Paper (PDF, 10143 KB) ■ Discussion Paper (CPD)

Citation: Roche, D. M., Dokken, T. M., Goosse, H., Renssen, H., and Weber, S. L.: Climate of the Last Glacial Maximum: sensitivity studies and model-data comparison with the LOVECLIM coupled model, Clim. Past, 3, 205-224, 2007. Bibtex EndNote Reference Manager

| EGU Journals | Contact |

Search CP Library Search

News

- TWO editors of Climate of the Past funded by ERC
- Financial Support for Authors
- New Service Charges

Recent Papers

01 | CP, 03 Nov 2008: Forced and internal modes of variability of the East Asian summer monsoon

02 | CPD, 27 Oct 2008: The 8.2 ka cooling event related to extensive melting of the Greenland Ice Sheet

03 | CP, 21 Oct 2008: Anticyclonic atmospheric circulation as an analogue for the warm and dry mid-Holocene summer climate in central Scandinavia

04 | CPD, 21 Oct 2008: