

ANNALS of **GEOPHYSICS**

USER

Username	
Password	

Remember me

Login

FAST TRACK

Vol

56,

Fast

Track

1,

2013

O Vol

57,

Fast

Track

2,

2014

o Vol

58,

Fast

Track 3, 2015

ARTICLE TOOLS

i

Indexing metadata

How to cite item

✓ Email this article (Login required)

✓ Emailthe author(Loginrequired)

ABOUT THE AUTHORS

Y. Sasai Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government, Tokyo, Japan

M. J. S. Johnston US Geological Survey, Menlo Park, CA, U.S.A.

Y. Tanaka
Graduate
School of
Science,
Kyoto
University,
Japan

R. Mueller US Geological Survey, Menlo Park, CA, U.S.A.

T.
Hashimoto
Graduate
School of

Science, Hokkaido University, Japan

M. Utsugi Graduate School of Science, Kyoto University, Japan

S.
Sakanaka
Faculty of
Engineering
and
Resource
Science,
Akita
University,
Japan

M.
Uyeshima
Earthquake
Research
Institute,
The
University
of Tokyo,
Japan

J. Zlotnicki Observatoire de Physique du Globe de Clermont-Ferrand, France

P. Yvetot
Observatoire
de
Physique
du Globe
de
ClermontFerrand,
France

KEYWORDS

Earthquake
GPS
Historical
seismology
Ionosphere
Irpinia
earthquake
Italy Mt.
Etna
Seismic
hazard
Seismic
hazard
seismic
hazard
assessment

UN/IDNDR earthquake earthquakes historical earthquakes historical seismology ionosphere magnetic anomalies paleoseismology radon seismic hazard seismicity seismology

Powered by OJS, engineered and maintained by CINECA.

SCIMAGO
JOURNAL
&
COUNTRY

RANK

5 YEARS IMPACT FACTOR

NOTIFICATIONS

- View
- Subscribe

ARCHIVES ANNOUNCEMENTS INGV

Home > Vol 50, No 1 (2007) > Sasai

Drag-out effect of piezomagnetic signals due to a borehole: the Mogi source as an example •

Y. Sasai, M. J. S. Johnston, Y. Tanaka, R. Mueller, T. Hashimoto, M. Utsugi,

S. Sakanaka, M. Uyeshima, J. Zlotnicki, P. Yvetot

Abstract

We show that using borehole measurements in tectonomagnetic experiments allows enhancement of the observed

signals. New magnetic dipoles, which vary with stress changes from mechanical sources, are produced

on the walls of the borehole. We evaluate such an effect quantitatively. First we formulate a general expression

for the borehole effect due to any arbitrary source models. This is valid everywhere above the ground surface as

well as within the cylindrical hole. A first-order approximate solution is given by a line of horizontal dipoles and

vertical quadrupoles along the central axis of the borehole, which is valid above the ground surface and a slightly

away (several tens of cm) from the top of the borehole. Selecting the Mogi model as an example, we numerically

evaluated the borehole effect. It turned out that the vertical quadrupoles produce two orders of magnitude

more intense magnetic field than the horizontal dipoles. The borehole effect is very local, i.e. detectable only

within a few m from its outlet, since it is of the same order or more than the case without a borehole. However,

magnetic lines of force cannot reach the ground surface from a deeper portion (>10 m) of a borehole.

Keywords

piezomagnetic effect; borehole magnetic measurement; the Mogi model; Long Valley

Full Text - Views: 730

PDF

Identifiers

• DOI: 10.4401/ag-3089

This work is licensed under a Creative Commons Attribution 3.0 License.

Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia -

ISSN: 2037-416X