放射性 Sr、Cs 及锕系元素在膨润土中 扩散系数的研究

苏锡光 任立宏 龙会遵 朱振国 夏德迎

(中国原子能科学研究院放射化学研究所,北京,102413)

关键词 膨润土 扩散系数 缓冲 回填材料

中图法分类号 TL 942.1

随着核能利用的发展,放射性废物地质处置问题已引起各国和国际有关组织的普遍重视, 一般将高放废物转变成固化体,然后在 500 m 以下深部地层处置,放射性废物通过包装容器, 缓冲、回填材料等人工屏障和天然屏障围岩以达到与生物圈永久性的隔离^[1-4]。

我国从 1985 年开始对高放废物处置库的场址选建,核素迁移,固化体性能等进行研究^[5—9]。高放废物在深部地层处置是 1 项长期复杂的系统工程。放射性核素作为地下水中特殊的溶质随地下水流迁移,对人类环境造成很大的影响和危害。利用缓冲、回填材料可将放射性核素阻滞在处置库内,延缓向人类环境迁移,这就需要寻找 1 种阻水性好、膨胀性大、对放射性核素具有良好的吸附性能的材料作为缓冲、回填材料^[3,4]。对此,本工作采用我国西北红泉膨润土进行研究。

1 扩散方程和扩散系数

核素在粘土中的扩散是 1 种在固相与液相多孔介质中的扩散, 主要依赖于液相传递扩散。 扩散系数的测定有多种方法, 本实验采用恒定源扩散法和背向背静扩散^[2,3]。图 1 为恒定源扩 散法的装置示意图, 使用的两个扩散池的体积比V₁ V₂= 10 1。两池分别加入 0.1 mol·L⁻¹

收稿日期: 1997-01-15 收到修改稿日期: 1997-03-04

苏锡光: 男, 58岁, 环境化学专业, 高级工程师

某扩散元素的稳定同位素的模拟地下水。实验时,在 前池中加入扩散物质的示踪剂。从后池中取样分析 示踪剂浓度^[5,8]。根据浓度从下列扩散方程求得扩散 系数。其扩散方程为

$$\frac{\partial}{\partial} = D \quad \frac{\partial c}{\partial^2} \tag{1}$$

式中:c为扩散物质浓度:D为扩散系数:t为扩散时 间

当 $c_1 \gg c_2$ 时, 根据扩散过程对方程(1) 求解^[2], 得 到下式

$$D = \frac{LV_2}{A c_1} \cdot \frac{dc_2}{dt}$$
(2)

在扩散过程中, 膨润土遇水易破裂, 因此在压实 的膨润土两边加1层滤膜,滤膜有阻力,求得的扩散 系数必须进行修正。修正方程[4]为:

С, C,

图 1 恒定源扩散装置

- Fig 1 Schematic view of the constant-source diffusion test setup
- L 为扩散物质; A 为压实的膨润土(扩散介质); c1、
- c2 分别为 2 个扩散池中放射性扩散物质的浓度

$$\frac{\langle D_a \rangle}{D_a} = \frac{1+2BK}{1+6BK+[6+2(3+BK/B^2)\cdot(BK)^2]}$$
(3)

式中: < D a> 为未经滤膜校正、通过实验测得的扩 散系数: D₂为经滤膜校正后实验测得的扩散系 数; K = 2 ¼ /L τ , $\tau = D_{a}/L^{2}$; A 为扩散物质横截 面; L 为扩散物质厚度; B = 𝒴R 𝒫 f, 𝒴 √ D /D f, $\eta_{R_{1}D_{1}}$ 分别为滤膜的孔隙率 阻滞因子和扩散 系数.D 为膨润土的扩散系数。以<Da>/Da为因 变量, BK 为自变量, B² 为参量三者作图, 获得校 正因子曲线(图 2)。从图 2 可以看出,在给定的 BK 值下, $B^2 > 0.5$ 时, $< D_a > D_a$ 的值变化较小, 这对滤膜校正计算是有利的。

图 3 是背向背静扩散装置示意图。将压实的 膨润土圆柱体放入密封的扩散室内, 膨润土圆柱 体中央夹有被扩散的放射性源。将扩散室放入1 个潮湿容器中自然扩散。扩散方程如下:

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \left[D_{a} \frac{dc}{dx} \right]$$
(4)

解方程得: $\frac{C}{M} = \frac{0.5}{(D_{a}t)^{\frac{1}{2}}} e^{\frac{-v^2}{4D_{a}t}}$

两边取对数: $\lg c = R - [0 4343(4D_a t)]x^2$

将 $\lg_c = x^2$ 作图,从曲线的斜率求得扩散系数。

式中: R 为常数: M 为单位面积上加入的扩散物质总量, mol/m²: x 为源扩散距离, m; t 为扩散 时间、 հ

图 2 扩散因子校正曲线

(5)

(6)

68

图 3 背向背静扩散示意图

Fig 3 Schematic diagram of the back-to-back diffusion test A 为扩散源(放射性扩散物质); B、C 为压实的膨润土(扩散介质); D 为扩散室

2 实验部分

2.1 模拟地下水的制备

将甘肃红泉钙型、镁型、混合型 3 种膨润土粉碎到 149—74 μm,分别称取一定量的膨润土 放入 20 L 的蒸馏水瓶中,加入去离子水,固液比 1 20,浸泡 30—120 d,用高速离心机(转速 1800 r/m in),使固液分离,上层清液备用。

2.2 实验装置

扩散池:采用有机玻璃装置(图1);

油压机: NYL-60;

同位素示踪剂: ⁹⁰Sr、¹³⁷Cs、²³⁹Pu、²⁴¹Am 为中国原子能科学研究院放射计量一级站提供的标准溶液。

3 结果与讨论

3.1 膨润土矿的理化性能测定

甘肃红泉钙型、镁型、混合型 3 种膨润土的物理性能、矿物组成及氧化物含量分别列于表 1、2 和 3 中。

表1 红泉膨润土的物理特性

膨润土 类型	矿物的酸 碱度(pH)	膜氏 硬度	总比表面积/ $m^2 \cdot g^{-1}$	湿压强度/ kg・cm ⁻²	压实后孔 隙率/%	压实后密度/ g·cm ⁻³	脱色力/%
混合型	7.6-9.16	< 1	328- 400	0.25	27.4-32.1	1. 70- 2. 00	
钙型	7. 10- 9. 00	< 1	328- 400	0.25	27.4-32.1	1. 52- 1. 76	70
镁型	7.40-9.50	< 1	328- 400	0.25	27.4-32.1	1. 56- 1. 81	

Table 1 Physical characteristics of ben ton ite from Hongquan

表 2 红泉膨润土的矿物组成

 Table 2
 Main components of the benton ite from Hongquan

矿物组成	质量分数/%	矿物组成	质量分数/%
蒙脱石	45.0	黑云母	5.0
石英	8.0	碳酸盐	2.0
高岭土	5.0	其它	30.0
长石	5.0		

Table 3 Composition of the benton ite from Hongquan									
膨润土		不同成份的质量分数 // /%							
类型	烧失量	SD 2	A 12O 3	Fe ₂ O ₃	T iO 2	CaO	M gO	K ₂ O	N a2O
混合型	8.05	63.30	19.84	4.44	0.34	1.38	1.57	0.61	0.93
钙型	7.66	64.90	18.40	4.44	0.32	1.54	1.81	0.38	0.85
镁型	7.41	64.20	21.80	4.54	0.31	0.43	2.40	0.25	1.06

表 3 红泉膨润土的氧化物成份

以上3表所列数据说明:3种红泉膨润土的 性质差不多,只是压实后的密度(混合型密度最 大,钙型最小)和化学组成 CaO、M gO、N a2O、K2O 及烧失量有所差异。

3.2 扩散样品对扩散实验的影响

高放废物处置场所处在 500 m 以下的深部地 层,废物罐的外部用压实的膨润土作为缓冲、回填 材料^[1,4],用来阻水以延迟核素的迁移。膨润土的 压实过程与它的含水率、压力、孔隙率有关(图 4、 5 和 6)。图 4 表明: 压力在 1.7-7.0 M Pa 范围 内, 膨润土的密度随压力的增加而增加, 含水率一 定时, 压力增加有一限值, 超过此限值, 膨润土试Fig 4 Relation ship between density and pressure 片将发生形变。图 5 说明: 当压力为 1.7 M Pa 时,

压实的膨润土试片孔隙率最大,而密度适中(图4)。图6表明:选定压力为1.7MPa时,改变 试片的含水率(10%—40%),试片的密度随含水率的升高先上升而后下降。另外,从试片自

图 4 密度与压力的关系

-混合型; ____ ——Ca型; ——Mg型 然干燥来看, 含水率> 24 % 时, 试片开始龟裂。综合上述实验结果, 选用含水率为 15 % 的膨润 土, 压制压力为 1.7 M Pa, 压制出的孔隙率大于 30 % 的试片为扩散实验的最佳试片。 3.3 扩散实验

3.3.1 模拟地下水的化学成份与浸泡时间的关系 将 3 种类型的红泉膨润土浸泡不同时间 (30—120 d),进行固液分离,上层清液即为模拟地下水。其化学成份分析结果列于表 4。

表 4 红泉膨润土浸泡不同时间时上层清液的化学成份 Table 4 Chem ical components of immersion fluid from Hongquan benton ite under various soaking time

		浓度/mg・L⁻¹							
成 份	子 混合型	混合型		型	镁型				
	30 d	120 d	30 d	88 d	30 d	46 d			
H 2 S D 2	18 8	20 4	35. 5	91. 8	20. 4	29.5			
A 1	< 0 01	< 0. 01	1. 66	12 7	0. 098	0 028			
Fe	2 20	0 35	0 24	4 40	0.25	0 30			
Ca	8 49	7.10	7.86	3 58	4. 59	6 35			
M g	5. 71	5.04	2 98	2 92	1. 40	2 13			
К	4. 62	8 72	7. 01	4.37	2 88	< 2 0			
N a	243 0	245. 0	195 0	106 0	147. 0	148 0			
Тi	< 0 005	< 0 005	0 034	0 22	0.10	< 0 005			
M n	0 024	< 0.001	0 015	0 015	0.034	0 10			
Sr	0 16	0 14	0 062	0 042	0.058	0 049			
Ba	< 0 001	0 014	0 007	0 001	< 0.001	0 006			
Li	< 0 001	0 005	0 003	< 0 001	< 0.001	0 002			
В	< 0 02	0 02	1. 19	< 0 02	< 0 02	< 0 01			
Zn	< 0 03	0 005	0 010	< 0 03	< 0.03	1. 008			

注: 浸泡后上层清液 pH= 7.0

表 4 所列数据表明: 3 种膨润土浸泡液中的大多数组分的含量随着浸泡时间的增加而增加, 有些元素含量变化不明显, 另有一些元素的含量则减少, 此现象有待进一步研究。 3. 3. 2 裂变产物 Sr 和 Cs 的分配比 K 测定 用批式法, 在常温、常压、固液比 1 20 下测定 Sr, Cs 在 3 种膨润土中的 K 。结果列于表 5。

Table 5 D ist	ribution coefficient of Sr,	Cs in three kinds of Hongq	uan ben ton ites
		$K d/mL \cdot g^{-1}$	
放射性核系	混合型	钙型	镁 型
Sr ²⁺	7. 13	6 08	6 08
$C s^+$	10 21	7.40	14.08

表5 Sr、Cs在3种膨润土中的分配比Ka

表 5 说明: 3 种红泉膨润土对 S r²⁺ 的分配比差别不大, 但混合型和镁型膨润土对 C s⁺ 的分配比大于钙型, 即对 C s⁺ 的阻滞能力大。

3.3.3 扩散实验 根据实验条件,采用"背向背'静扩散法和恒定源扩散法,分别测定⁹⁰Sr、¹³⁷Cs²⁴¹Am、¹²⁹Pu 的扩散系数。

(1) 背向背静扩散实验 在最佳条件下制备扩散样品。把膨润土压实,制成 2 个圆柱体 (ϕ 12 mm,长 480 mm),将⁹⁰Sr,¹³⁷Cs,²⁴¹Am,²³⁹Pu 示踪剂滴加在圆形滤纸上(ϕ 12 mm)制成所 需活度的扩散源。使扩散源与 2 个圆柱体紧密接触并密封在扩散室内,将扩散室放入潮湿的密 封容器中,让其自然扩散。扩散到预定时间后,取出膨润土扩散柱,并切割成薄片,测量每片切 片的放射性活度,求出扩散物质浓度。以扩散物质浓度的对数与扩散距离的平方作图(图 7), 并求得扩散系数*D*。结果列于表 6。

图 7 Sr, Cs, Am, Pu 在压实的红泉混合型膨润土中的扩散

Fig 7 Diffusion of Sr, Cs, Am and Pu in compacted mixture bentonite from Hongquan $-Sr; -Cs; \times -Pu; + -Am$

表 6 不同核素在压实混合型红泉膨润土中的扩散系数

Table 6 D iffusion coefficient of radionuclides in compacted mixture benton ites from Hongquan

核素	扩散时间/d	扩散系数D a/m ² ・s ⁻¹	核	素	扩散时间/d	扩散系数D a/m ² ・s ⁻¹
⁹⁰ Sr	101	2 45 × 10 ⁻¹¹	239	Pu	150	2 54 × 10 ⁻¹⁴
¹³⁷ C s	143	1. 52 × 10 ⁻¹²	241	Am	106	2 50 × 10 ⁻¹⁴

图 7、表 6 表明: Sr, Cs 和锕系元素在红泉混合型膨润土中的扩散系数比较小, 它对这些核素具有较强的阻滞能力, 是 1 种较好的缓冲回填材料。

(2) 恒定源扩散实验 将压实的膨润土片(Φ50 mm,厚 5 mm)装入两池之间,前池加入
 含⁹⁰Sr(或¹³⁷Cs)示踪剂的模拟地下水,并加入 0.1 mol·L⁻¹扩散物质的稳定同位素于两池中,
 © 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.r

以保持离子强度^[5,7,9]。利用磁力搅拌器不断搅拌保持池中扩散物质的浓度分布均匀。从后池 取样分析扩散物质浓度。以扩散物质的浓度对扩散时间作图(图 8),由图 8 求得的扩散系数 < D_a> 列于表 7。

表 7 用恒定源法测得的⁹⁰Sr 和¹³⁷Cs 的扩散系数

Cable 7 Diffusion coefficients of	of ⁹⁰ Sr and	137 Cs by constent source method
-----------------------------------	-------------------------	---------------------------------------

核素	扩散时间/d	膨润土类型	实验测得的扩散系数< D a> $/m^2 \cdot s^{-1}$	滤膜校正后的扩散系数 $Da/m^2 \cdot s^{-1}$
⁹⁰ Sr	120	混合型	1. 12 × 10 ⁻¹²	1. 59 × 10 ⁻¹²
¹³⁷ C s			6 01 × 10 ⁻¹²	1. 42 × 10 ⁻¹¹
⁹⁰ Sr	120	镁型	1. 04 × 10 ⁻¹²	1. 13 × 10 ⁻¹²
¹³⁷ C s			4. 98 × 10 ⁻¹²	1. 54 × 10 ⁻¹¹

为了对扩散系数进行校正,对 Sr 和 Cs 进行了单一的滤膜扩散实验(图 9)。图 9 示明:扩 散曲线起始比较陡峭,说明 Sr 和 Cs 快速穿过滤膜,这是由于聚四氟乙烯膜渗水必须使用 1 种 溶剂来引导渗透,从而很快达到平稳渗透,此时与经典扩散曲线相符^[3,4]。由于渗透快,膜的阻 力很小, Sr 和 Cs 的渗透过膜时间无法实验测得,这里用试探法用校正公式< D_a / D_a 计算。 假定 Sr 和 Cs 的渗透过膜时间无法实验测得,这里用试探法用校正公式< D_a / D_a 计算。 假定 Sr 和 Cs 通过膜的时间分别为 50 m in 和 3 s, $< D_a$ / D_a 计算值将出现微小变化,对 Sr 上 浮约 0 01, Cs 上浮不到 0 02。即当 Sr 和 Cs 从滤膜通过的时间在 3—3000 s 内变化时,对 Cs, Sr 的扩散系数修正只产生微小的影响。为此,在修正 Sr 和 Cs 的扩散系数 D_a 值时,取单膜渗 透通过的时间为 60 s。校正结果列入表 7。结果表明,所用聚四氟乙烯膜阻滞能力很小。它作 为膨润土扩散滤膜是比较理想的。

4 结论

上述实验结果表明: 甘肃红泉膨润土矿含蒙托 石较高,膨胀性较好。用背向背和恒定源法测定出。 Sr, Cs在混合型膨润土中的扩散系数分别为D(Sr)= 2 45 × 10⁻¹¹ m² · s⁻¹, D (Cs) = 1.52 × 10⁻¹² $m^{2} \cdot s^{-1}; D_{a}(Sr) = 1.59 \times 10^{-12} m^{2} \cdot s^{-1}, D_{a}(Cs) =$ 1. 42 × 10⁻¹¹ m² · s⁻¹。两者的差异可能是由于恒定源 法引入滤膜校正所致。在压实镁型膨润土中, Sr, Cs 的扩散系数 $D_a(Sr) = 1.13 \times 10^{-12} \text{ m}^2 \cdot \text{s}^{-1}, D_a(Cs)$ $= 1.54 \times 10^{-11} \text{ m}^2 \cdot \text{s}^{-1}$, 与混合型膨润土相当。背向 背法混合膨润土中的扩散系数D(Cs),D(Am)与瑞 典^[3,4]以同一方法在Na型膨润土中的扩散系数相 比,本实验测得的 $D(C_s)$ 值高1个量级,而D(Am)则相当。红泉膨润土对裂变产物和锕系元素都具有 较好的阻滞能力、加之红泉膨润土含镁较高、镁对玻 璃体形成保护膜,能使玻璃固化体中的放射性浸出 率降低。这一点有待进一步进行实验研究证实。

综上所述,我国红泉膨润土作为高放废物处置库的缓冲、回填材料是有应用前景的。

- Birgit, Christianson, BoRJE Torstenfelt Diffusion of Nickel, Strontium, Iodine, Cesium and Americium in loo sely Compacted Bentonite at High pH. Radiochimica A cta, 1988, (44/45): 219.
- 2 Higgo JJW, Cole TG, Rees LVC. Diffusion of Radionuclides Through Deep-sea Sediments Radiochimica A cta, 1988, (44/45): 231.
- 3 M eier H, Zimmerhack I E, Hecker W, et al M easurement of D iffusion of Radionuclides in Sediment Rocks Radioch in ica A cta, 1988, (44/45): 239.
- 4 Put MJ, Henrion PN. An Improved M ethod to Evaluate Radionuclide M igration M odel Parameters From Flow -through D iffusion Tests in Reconsolidated Clay Plugs Radiochim ica A cta, 1988, (44/45): 343
- 5 温瑞媛, 王祥云, 高宏成 裂片核素在岩石中迁移研究——纵向弥散系数的测定和核素¹²⁹I的迁移模型 核 化学与放射化学, 1994, 15(3): 129.
- 6 王榕树, 冯 为 放射性核素在地质介质中的迁移研究 核化学与放射化学, 1994, 15(2): 117.
- 7 陆誓俊, 叶明吕, 王 坚, 等 放射性碘在地质材料中吸附和迁移的研究 核化学与放射化学, 1991, 13(2):
 91.
- 8 温瑞媛, 高宏成, 蒋成华, 等. 裂片核素在岩石中的迁移研究——核素⁷⁵Se 在花岗岩和石灰岩中的扩散行为. 核化学与放射化学, 1991, 13(4): 213.
- 9 叶明吕, 陆誓俊, 谭佐兵, 等 各种因素对放射性锶, 铯在花岗岩上的吸附与迁移影响的研究 核化学与放射 化学, 1993, 15(2): 88

STUDY ON D IFFUSION COEFFICIENT OF RAD DACTIVE Sr, Cs AND ACTIN DES IN BENTON ITE

Su Xiguang Ren Lihong Long Huizun Zhu Zhenguo Xia Deying

(China Institute of A tom ic Energy, P. O. B ox 275-93, B eijing, 102413)

ABSTRACT

The paper is about the research on the buffer-backfill material used as HLW disposal from Hongquan in northwest of China Physico-chem ical property, mineral components and diffusion coefficient by using back to back and constant source for 90 Sr, 137 Cs, 239 Pu and 241 Am are detem ined, and the diffusion coefficients are respectively $D_{Sr} = 2.45 \times 10^{-11} \text{ m}^2 \cdot \text{s}^{-1}$, $D_{Cs} = 1.52 \times 10^{-12} \text{ m}^2 \cdot \text{s}^{-1}$, $D_{Am} = 2.50 \times 10^{-14} \text{ m}^2 \cdot \text{s}^{-1}$, $D_{Pu} = 2.54 \times 10^{-14} \text{ m}^2 \cdot \text{s}^{-1}$ (m ix ture bentonite) and $D_a(Sr) = 1.59 \times 10^{-12} \text{ m}^2 \cdot \text{s}^{-1}$, $D_a(Cs) = 1.42 \times 10^{-11} \text{ m}^2 \cdot \text{s}^{-1}$ (m ixture bentonite); $D_a(Sr) = 1.13 \times 10^{-12} \text{ m}^2 \cdot \text{s}^{-1}$, $D_a(Cs) = 1.54 \times 10^{-11} \text{ m}^2 \cdot \text{s}^{-1}$ (M g-bentonite). The results show that diffusion rate of radionuclides in bentonite is very slow. This buffer-backfill material of bentonite used as HLW disposal is prospective

Key words Bentonite Diffusion coefficient Buffer-backfillmaterial

日本食品综合研究所用电子束进行谷类杀菌

日本食品综合研究所辐射应用研究室主任林彻指出,利用低能量的电子束,几乎不损谷类的质量而能杀 菌,已经开发出了试验装置。低成本处理是该装置的特点。今后的目标是与厂商共同开发使其应用化。

照射的电子束能量水平是 60—150 kV, 与电子显微镜相同程度。除糙米、小麦外, 胡椒等种子状的东西几 乎都能用此方法进行杀菌。

摘自中国原子能科学研究院《科技信息》