A tom ic Energy Science and Technology

放射性 Sr、Cs 及锕系元素在膨润土中 扩散系数的研究

苏锡光 任立宏 龙会遵 朱振国 夏德迎

(中国原子能科学研究院放射化学研究所, 北京, 102413)

对采用我国西北红泉膨润土作为高放废物处置的缓冲、回填材料进行了研究、测定了该膨润 土的物理和化学性能, 矿物组成, 裂变产物 Sr. Cs 及锕系元素 Am, Pu 的扩散系数。"背向背"法测 得混合型膨润土的扩散系数分别为 $D_{Sr} = 2.45 \times 10^{-11} \,\mathrm{m}^2 \cdot \mathrm{s}^{-1}$, $D_{Cs} = 1.52 \times 10^{-12} \,\mathrm{m}^2 \cdot \mathrm{s}^{-1}$, $D_{Am} = 1.52 \times 10^{-12} \,\mathrm{m}^2 \cdot \mathrm{s}^{-1}$ $2.50 \times 10^{-14} \text{m}^2 \cdot \text{s}^{-1}$ 和 $D_{Pu} = 2.54 \times 10^{-14} \text{m}^2 \cdot \text{s}^{-1}$ 。恒定源法测得混合型和镁型膨润土的经过滤膜 校正的扩散系数分别为 $D_a(Sr) = 1.59 \times 10^{-12} \text{m}^2 \cdot \text{s}^{-1}$, $D_a(Cs) = 1.42 \times 10^{-11} \text{m}^2 \cdot \text{s}^{-1}$ 和 $D_a(Sr) = 1.59 \times 10^{-12} \text{m}^2 \cdot \text{s}^{-1}$ 1. 13×10⁻¹²m²·s⁻¹, D_a(Cs) = 1. 54×10⁻¹¹m²·s⁻¹。结果表明: Sr, Cs, Am, Pu 等核素在红泉膨润 土中的扩散速度缓慢,该膨润土作为高放废物处置库的缓冲,回填材料是有前景的。

关键词 膨润土 扩散系数 缓冲 回填材料 中图法分类号 TL 942.1

随着核能利用的发展、放射性废物地质处置问题已引起各国和国际有关组织的普遍重视、 一般将高放废物转变成固化体,然后在 500 m 以下深部地层处置,放射性废物通过包装容器, 缓冲 回填材料等人工屏障和天然屏障围岩以达到与生物圈永久性的隔离[1-4]。

我国从 1985 年开始对高放废物处置库的场址选建 核素迁移 固化体性能等进行研 究[5-9]。高放废物在深部地层处置是1项长期复杂的系统工程。放射性核素作为地下水中特殊 的溶质随地下水流迁移、对人类环境造成很大的影响和危害。 利用缓冲、回填材料可将放射性 核素阻滞在处置库内,延缓向人类环境迁移,这就需要寻找1种阻水性好、膨胀性大、对放射性 核素具有良好的吸附性能的材料作为缓冲、回填材料[3,4]。对此,本工作采用我国西北红泉膨润 土进行研究。

扩散方程和扩散系数

核素在粘土中的扩散是1种在固相与液相多孔介质中的扩散、主要依赖于液相传递扩散。 扩散系数的测定有多种方法,本实验采用恒定源扩散法和背向背静扩散[2,3]。图 1 为恒定源扩 散法的装置示意图. 使用的两个扩散池的体积比 V_1 $V_2=10-1$ 。两池分别加入 0.1 mol·L·¹ 某扩散元素的稳定同位素的模拟地下水。实验时, 在前池中加入扩散物质的示踪剂。从后池中取样分析示踪剂浓度^[5,8]。根据浓度从下列扩散方程求得扩散系数。其扩散方程为

$$\frac{\partial c}{\partial t} = D \frac{\partial c}{\partial t^2} \tag{1}$$

式中: c 为扩散物质浓度; D 为扩散系数; t 为扩散时间。

当 $c_1 \gg c_2$ 时, 根据扩散过程对方程(1) 求解 $^{[2]}$, 得到下式

$$D = \frac{LV_2}{A c_1} \cdot \frac{dc_2}{dt}$$
 (2)

在扩散过程中, 膨润土遇水易破裂, 因此在压实的膨润土两边加 1 层滤膜, 滤膜有阻力, 求得的扩散系数必须进行修正。修正方程^[4]为:

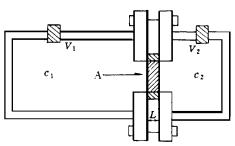


图 1 恒定源扩散装置

Fig 1 Schematic view of the constant-source diffusion test setup

L 为扩散物质; A 为压实的膨润土(扩散介质); c_1 c_2 分别为 2 个扩散池中放射性扩散物质的浓度

$$\frac{\langle D_a \rangle}{D_a} = \frac{1 + 2B K}{1 + 6B K + [6 + 2(3 + B K/B^2) \cdot (B K)^2]}$$
(3)

式中: $\langle D_a \rangle$ 为未经滤膜校正、通过实验测得的扩散系数; D_a 为经滤膜校正后实验测得的扩散系数; K = 2 M L T, $T = D_a/L^2$; A 为扩散物质横截面; L 为扩散物质厚度; $B = MR D_f$, $Y = \sqrt{D/D_f}$, $N_c R_b D_f$ 分别为滤膜的孔隙率 阻滞因子和扩散系数, $D_a P_b$ 为固变量, $P_b P_b$ 为参量三者作图, 获得校正因子曲线(图 2)。 从图 2 可以看出, 在给定的 $P_b P_b$ $P_b P_b$ 的值变化较小, 这对滤膜校正计算是有利的。

图 3 是背向背静扩散装置示意图。将压实的 膨润土圆柱体放入密封的扩散室内, 膨润土圆柱 体中央夹有被扩散的放射性源。将扩散室放入 1 个潮湿容器中自然扩散。扩散方程如下:

$$\frac{\partial}{\partial c} = \frac{\partial}{\partial c} \left(D_a \frac{dc}{dx} \right) \tag{4}$$

解方程得:
$$\frac{C}{M} = \frac{0.5}{(D_a t)^{\frac{1}{2}}} e^{\frac{-v^2}{4D_a t}}$$

两边取对数:
$$\lg c = R - [0.4343(4D_a t)]x^2$$

将 $\lg c$ 与 x^2 作图, 从曲线的斜率求得扩散系数。 式中: R 为常数; M 为单位面积上加入的扩散物质总量, mol/m^2 ; x 为源扩散距离, m; t 为扩散时间, s.

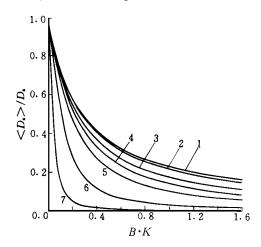


图 2 扩散因子校正曲线

Fig. 2 Correction curves of diffusion factor B²: 1—10000; 2—10; 3—2; 4—1; 5—0.5; 6—0.1; 7—0.01

(6)

(5)

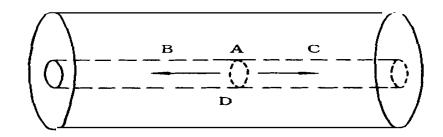


图 3 背向背静扩散示意图

Fig 3 Schematic diagram of the back-to-back diffusion test A 为扩散源(放射性扩散物质); B、C 为压实的膨润土(扩散介质); D 为扩散室

2 实验部分

2.1 模拟地下水的制备

将甘肃红泉钙型、镁型、混合型 3 种膨润土粉碎到 149— $74~\mu m$,分别称取一定量的膨润土放入 20~L 的蒸馏水瓶中,加入去离子水,固液比 1~20,浸泡 30—120~d,用高速离心机(转速 1800~rm in),使固液分离,上层清液备用。

2.2 实验装置

扩散池: 采用有机玻璃装置(图 1);

油压机: N YL -60:

同位素示踪剂: 90 Sr、 137 Cs、 239 Pu、 241 Am 为中国原子能科学研究院放射计量一级站提供的标准溶液。

3 结果与讨论

3.1 膨润土矿的理化性能测定

甘肃红泉钙型、镁型、混合型 3 种膨润土的物理性能 矿物组成及氧化物含量分别列于表 1、2 和 3 中。

表 1 红泉膨润土的物理特性

Table 1 Physical characteristics of benton ite from Hongquan

膨润土 类型	矿物的酸 碱度(pH)	膜氏 硬度	总比表面积/ cm²·g-1	湿压强度/ kg·cm ⁻²	压实后孔 隙率/%	压实后密度/ g·cm ⁻³	脱色力/%
混合型	7. 6- 9. 16	< 1	328- 400	0. 25	27. 4- 32 1	1. 70- 2 00	_
钙型	7. 10- 9. 00	< 1	328- 400	0. 25	27. 4- 32 1	1. 52- 1. 76	70
<u>镁型</u>	7. 40- 9. 50	< 1	328- 400	0. 25	27. 4- 32 1	1. 56- 1. 81	

表 2 红泉膨润土的矿物组成

Table 2 Main components of the benton ite from Hongquan

矿物组成	质量分数/%	矿物组成	质量分数/%
蒙脱石	45.0	黑云母	5.0
石英	8.0	碳酸盐	2.0
高岭土	5.0	其它	30.0
长石	5.0		

		Iabic	e cumpo	SILION OF U	c ben ton it	c ii diii iidi	16quan			
膨润土		不同成份的质量分数 _w /%								
类型	烧失量	SD 2	A l ₂ O ₃	Fe ₂ O ₃	T iO 2	CaO	M gO	K ₂ O	N a ₂ O	
混合型	8. 05	63.30	19. 84	4.44	0.34	1.38	1.57	0.61	0. 93	
钙型	7. 66	64. 90	18.40	4.44	0.32	1.54	1.81	0.38	0. 85	
镁型	7.41	64. 20	21.80	4.54	0.31	0.43	2.40	0.25	1.06	

表 3 红泉膨润土的氧化物成份

Table 3 Composition of the benton ite from Hongquan

以上 3 表所列数据说明: 3 种红泉膨润土的性质差不多, 只是压实后的密度(混合型密度最大, 钙型最小)和化学组成 CaO、M gO、N a₂O、K₂O 及烧失量有所差异。

3.2 扩散样品对扩散实验的影响

高放废物处置场所处在 500 m 以下的深部地层, 废物罐的外部用压实的膨润土作为缓冲, 回填材料^[1,4], 用来阻水以延迟核素的迁移。膨润土的压实过程与它的含水率, 压力, 孔隙率有关(图 4,5 和 6)。图 4 表明: 压力在 1.7—7.0 M Pa 范围内, 膨润土的密度随压力的增加而增加, 含水率一

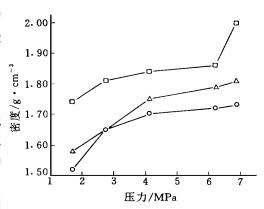


图 4 密度与压力的关系

定时, 压力增加有一限值, 超过此限值, 膨润土试Fig 4 Relation ship between density and pressure 片将发生形变。图 5 说明: 当压力为 1.7 M Pa 时, ——混合型: ——Mg型

压实的膨润土试片孔隙率最大, 而密度适中(图 4)。图 6 表明: 选定压力为 1.7 M Pa 时, 改变试片的含水率(10 % —40 %), 试片的密度随含水率的升高先上升而后下降。另外, 从试片自

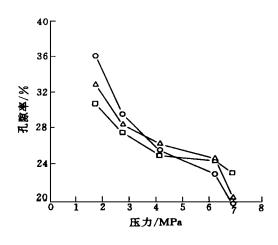


图 5 孔隙率与压力的关系

Fig 5 Relation between porosity and pressure 膨润土试片含水率为 15 %

——混合型; ——Ca 型; ——M g 型

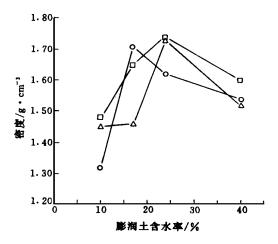


图 6 密度与含水率的关系

Fig 6 Relation between density and moistrue content 压力: 1.7 M Pa
——混合型: ——Ca型: ——Mg型

然干燥来看, 含水率> 24% 时, 试片开始龟裂。综合上述实验结果, 选用含水率为 15% 的膨润土, 压制压力为 1.7M Pa, 压制出的孔隙率大于 30% 的试片为扩散实验的最佳试片。

3.3 扩散实验

3. 3. 1 模拟地下水的化学成份与浸泡时间的关系 将 3 种类型的红泉膨润土浸泡不同时间 (30—120 d), 进行固液分离, 上层清液即为模拟地下水。 其化学成份分析结果列于表 4。

表 4 红泉膨润土浸泡不同时间时上层清液的化学成份

Table 4 Chemical components of immersion fluid from Hongquan benton ite under various soaking time

			浓度/mg	g · L - 1		
成 份	混合	型	钙	型	镁型	
	30 d	120 d	30 d	88 d	30 d	46 d
H2SD2	18 8	20 4	35. 5	91. 8	20. 4	29. 5
Αl	< 0.01	< 0.01	1. 66	12 7	0 098	0 028
Fe	2 20	0 35	0 24	4 40	0. 25	0 30
Ca	8 49	7. 10	7. 86	3 58	4. 59	6 35
М д	5. 71	5. 04	2 98	2 92	1. 40	2 13
K	4. 62	8 72	7. 01	4. 37	2 88	< 2 0
N a	243 0	245. 0	195. 0	106 0	147. 0	148 0
Тi	< 0 005	< 0.005	0 034	0 22	0. 10	< 0 005
M n	0. 024	< 0.001	0 015	0 015	0. 034	0 10
Sr	0 16	0 14	0 062	0 042	0.058	0 049
Ва	< 0 001	0 014	0 007	0 001	< 0.001	0 006
Li	< 0 001	0 005	0 003	< 0 001	< 0.001	0 002
В	< 0 02	0 02	1. 19	< 0 02	< 0.02	< 0 01
Zn	< 0 03	0 005	0 010	< 0 03	< 0.03	1. 008

注: 浸泡后上层清液 pH= 7.0

表 4 所列数据表明: 3 种膨润土浸泡液中的大多数组分的含量随着浸泡时间的增加而增加, 有些元素含量变化不明显, 另有一些元素的含量则减少, 此现象有待进一步研究。

3. 3. 2 裂变产物 Sr 和 Cs 的分配比 Ka 测定 用批式法, 在常温、常压、固液比 1 20 下测定 Sr, Cs 在 3 种膨润土中的 Ka。 结果列于表 5。

表 5 Sr、Cs 在 3 种膨润土中的分配比 Ka

Table 5 D istribution coefficient of Sr, Cs in three kinds of Hongquan benton ites

+60+44++		$K_{\rm d}/mL \cdot g^{-1}$	
放射性核素	混合型	钙 型	镁 型
Sr^{2+}	7. 13	6 08	6 08
Cs^+	10 21	7. 40	14 08

表 5 说明: 3 种红泉膨润土对 Sr^{2+} 的分配比差别不大, 但混合型和镁型膨润土对 Cs^+ 的分配比大于钙型, 即对 Cs^+ 的阻滞能力大。

- 3. 3. 3 扩散实验 根据实验条件, 采用"背向背'静扩散法和恒定源扩散法, 分别测定 90 Sr、 137 Cs. 241 Am、 129 Pu 的扩散系数。
- (1) 背向背静扩散实验 在最佳条件下制备扩散样品。把膨润土压实,制成 2 个圆柱体 (ϕ 12 mm,长 480 mm),将 90 Sr, 137 Cs, 241 Am、 239 Pu 示踪剂滴加在圆形滤纸上(ϕ 12 mm)制成所需活度的扩散源。使扩散源与 2 个圆柱体紧密接触并密封在扩散室内,将扩散室放入潮湿的密封容器中,让其自然扩散。扩散到预定时间后,取出膨润土扩散柱,并切割成薄片,测量每片切片的放射性活度,求出扩散物质浓度。以扩散物质浓度的对数与扩散距离的平方作图(图 7),并求得扩散系数 D。结果列于表 6.

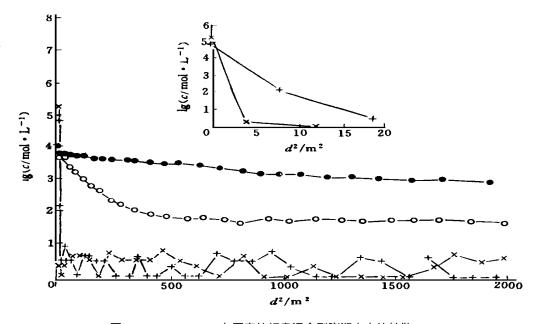


图 7 Sr, Cs, Am, Pu 在压实的红泉混合型膨润土中的扩散

Fig 7 Diffusion of Sr, Cs, Am and Pu in compacted mixture bentonite from Hongquan
——Sr; ——Cs; ×——Pu; + ——Am

表 6 不同核素在压实混合型红泉膨润土中的扩散系数

Table 6 D iffusion coefficient of radionuclides in compacted m ixture benton ites from Hongquan

核 素	扩散时间/d	扩散系数D a ∕m ²·s⁻¹	核	素	扩散时间/d	扩散系数D a∕m²·s⁻¹
$^{90}\mathrm{Sr}$	101	2 45 × 10 ⁻¹¹	²³⁹ P	'u	150	2.54×10^{-14}
137C s	143	1. 52 × 10 ⁻¹²	²⁴¹ A	m	106	2 50 × 10 ⁻¹⁴

图 7, 表 6 表明: Sr, Cs 和锕系元素在红泉混合型膨润土中的扩散系数比较小, 它对这些核素具有较强的阻滞能力, 是 1 种较好的缓冲回填材料。

(2) 恒定源扩散实验 将压实的膨润土片($\phi_{50 \text{ mm}}$, 厚 5 mm) 装入两池之间, 前池加入含% \mathbf{r} (或 $^{137}\mathbf{r}$ Cs) 示踪剂的模拟地下水, 并加入 0 1 mol·L ¹¹扩散物质的稳定同位素于两池中,

以保持离子强度^[5,7,9]。利用磁力搅拌器不断搅拌保持池中扩散物质的浓度分布均匀。从后池取样分析扩散物质浓度。以扩散物质的浓度对扩散时间作图(图 8), 由图 8 求得的扩散系数 $< D_a >$ 列于表 7_a

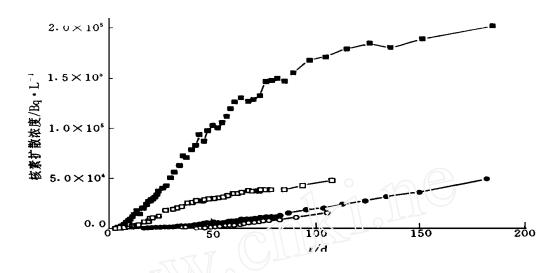


图 8 ⁹⁰Sr, ¹³⁷Cs 在压实的红泉膨润土中的扩散
Fig. 8 Diffusion of ⁹⁰Sr and ¹³⁷Cs in compacted bentonite from Hongquan
——Sr(混合型): ——Cs(混合型): ——Sr(镁型): ——Cs(镁型)

表 7 用恒定源法测得的⁹⁰Sr 和¹³⁷Cs 的扩散系数 Table 7 D iffusion coefficients of ⁹⁰Sr and ¹³⁷Cs by constent source method

核素	扩散时间/d	膨润土类型	实验测得的扩散系数< D a> /m² · s⁻ ¹	滤膜校正后的扩散系数 $D_a/m^2 \cdot s^{-1}$
⁹⁰ Sr	120	混合型	1. 12 × 10 ⁻¹²	1. 59×10^{-12}
¹³⁷ C s			6 01 × 10 ⁻¹²	1. 42×10^{-11}
⁹⁰ Sr	120	镁型	1. 04 × 10 ⁻¹²	1. 13×10^{-12}
¹³⁷ C s			4 98 × 10 ⁻¹²	1. 54 × 10 ⁻¹¹

为了对扩散系数进行校正, 对 Sr 和 Cs 进行了单一的滤膜扩散实验 (图 9)。图 9 示明: 扩散曲线起始比较陡峭, 说明 Sr 和 Cs 快速穿过滤膜, 这是由于聚四氟乙烯膜渗水必须使用 1 种溶剂来引导渗透, 从而很快达到平稳渗透, 此时与经典扩散曲线相符 (3,4]。由于渗透快, 膜的阻力很小, Sr 和 Cs 的渗透过膜时间无法实验测得, 这里用试探法用校正公式 (D_a) (D_a) 计算。假定 Sr 和 Cs 的渗透过膜时间无法实验测得, 这里用试探法用校正公式 (D_a) (D_a) 计算。假定 Sr 和 (D_a) 和 (D_a) 的 (D_a) 的

增刊

74 原子能科学技术 第 32 卷

4 结论

上述实验结果表明: 甘肃红泉膨润土矿含蒙托 石较高,膨胀性较好。用背向背和恒定源法测定出 Sr. Cs 在混合型膨润土中的扩散系数分别为D(Sr)= 2 45 \times 10⁻¹¹ m² · s⁻¹, D (Cs) = 1. 52 \times 10⁻¹² $m^{2} \cdot s^{-1}$; $D_{a}(Sr) = 1.59 \times 10^{-12} m^{2} \cdot s^{-1}$, $D_{a}(Cs) =$ 1. $42 \times 10^{-11} \,\mathrm{m}^2 \cdot \mathrm{s}^{-1}$ 。两者的差异可能是由于恒定源 法引入滤膜校正所致。在压实镁型膨润土中, Sr, Cs 的扩散系数 $D_a(Sr) = 1.13 \times 10^{-12} \,\mathrm{m}^2 \cdot \mathrm{s}^{-1}, D_a(Cs)$ = 1.54 × 10⁻¹¹ m² · s⁻¹, 与混合型膨润土相当。背向 背法混合膨润土中的扩散系数D(Cs),D(Am)与瑞 典[3,4]以同一方法在Na型膨润土中的扩散系数相 比, 本实验测得的 $D(C_s)$ 值高 1 个量级, 而 $D(A_m)$ 则相当。红泉膨润土对裂变产物和锕系元素都具有 较好的阻滞能力, 加之红泉膨润土含镁较高, 镁对玻 璃体形成保护膜,能使玻璃固化体中的放射性浸出 率降低。这一点有待进一步进行实验研究证实。

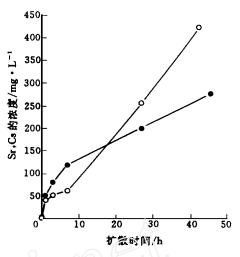


图 9 Sr 和 Cs 在滤膜中的扩散 Fig 9 Diffusion of Sr and Cs in filter mem brane ——Sr; ——Cs

综上所述, 我国红泉膨润土作为高放废物处置库的缓冲, 回填材料是有应用前景的。

参考文献

- 1 Birgit, Christianson, BoRJE Torstenfelt Diffusion of Nickel, Strontium, Iodine, Cesium and Americium in loosely Compacted Bentonite at High pH. Radiochimica Acta, 1988, (44/45): 219.
- 2 Higgo JJW, Cole TG, Rees LVC. Diffusion of Radionuclides Through Deep-sea Sediments Radiochimica Acta, 1988, (44/45): 231.
- 3 Meier H, Zimmerhack 1E, Hecker W, et al Measurement of Diffusion of Radionuclides in Sediment Rocks Radioch in ica Acta, 1988, (44/45): 239.
- 4 Put MJ, Henrion PN. An Improved Method to Evaluate Radionuclide Migration Model Parameters From Flow-through Diffusion Tests in Reconsolidated Clay Plugs Radiochimica Acta, 1988, (44/45): 343
- 5 温瑞媛,王祥云,高宏成 裂片核素在岩石中迁移研究——纵向弥散系数的测定和核素¹²⁹I的迁移模型 核 化学与放射化学,1994,15(3):129.
- 6 王榕树, 冯 为 放射性核素在地质介质中的迁移研究 核化学与放射化学, 1994, 15(2): 117.
- 7 陆誓俊, 叶明吕, 王 坚, 等. 放射性碘在地质材料中吸附和迁移的研究. 核化学与放射化学, 1991, 13(2): 91.
- 8 温瑞媛, 高宏成, 蒋成华, 等. 裂片核素在岩石中的迁移研究——核素 75 Se 在花岗岩和石灰岩中的扩散行为. 核化学与放射化学, 1991, 13(4): 213
- 9 叶明吕, 陆誓俊, 谭佐兵, 等 各种因素对放射性锶 铯在花岗岩上的吸附与迁移影响的研究 核化学与放射化学, 1993, 15(2): 88

STUDY ON D IFFUSION COEFFICIENT OF RAD DACTIVE Sr. Cs AND ACTIN DES IN BENTONITE

Su Xiguang Ren Lihong Long Huizun Zhu Zhenguo Xia Deying

(China Institute of A tom ic Energy, P. O. B ox 275-93, B eijing, 102413)

ABSTRACT

The paper is about the research on the buffer-backfill material used as HLW disposal from Hongquan in northwest of China Physico-chemical property, mineral components and diffusion coefficient by using back to back and constant source for 90 Sr, 137 Cs, 239 Pu and 241 Am are determined, and the diffusion coefficients are respectively $D_{Sr} = 2.45 \times 10^{-11} \, \text{m}^2 \cdot \text{s}^{-1}$, $D_{Cs} = 1.52 \times 10^{-12} \, \text{m}^2 \cdot \text{s}^{-1}$, $D_{Am} = 2.50 \times 10^{-14} \, \text{m}^2 \cdot \text{s}^{-1}$, $D_{Pu} = 2.54 \times 10^{-14} \, \text{m}^2 \cdot \text{s}^{-1}$ (mixture bentonite) and $D_a(Sr) = 1.59 \times 10^{-12} \, \text{m}^2 \cdot \text{s}^{-1}$, $D_a(Cs) = 1.42 \times 10^{-11} \, \text{m}^2 \cdot \text{s}^{-1}$ (mixture bentonite); $D_a(Sr) = 1.13 \times 10^{-12} \, \text{m}^2 \cdot \text{s}^{-1}$, $D_a(Cs) = 1.54 \times 10^{-11} \, \text{m}^2 \cdot \text{s}^{-1}$ (M g-bentonite). The results show that diffusion rate of radionuclides in bentonite is very slow. This buffer-backfill material of bentonite used as HLW disposal is prospective

Key words Bentonite Diffusion coefficient Buffer-backfill material

日本食品综合研究所用电子束进行谷类杀菌

日本食品综合研究所辐射应用研究室主任林彻指出,利用低能量的电子束,几乎不损谷类的质量而能杀菌,已经开发出了试验装置。低成本处理是该装置的特点。今后的目标是与厂商共同开发使其应用化。

照射的电子束能量水平是 60—150 kV,与电子显微镜相同程度。除糙米、小麦外,胡椒等种子状的东西几乎都能用此方法进行杀菌。

摘自中国原子能科学研究院《科技信息》