Cu²⁺-Adsorption Characteristics of Aluminum Hydroxide and Oxyhydroxides¹ ## M. B. McBride Department of Agronomy, Cornell University, Ithaca, New York 14853 ¹ Agronomy paper No. 1399. **Abstract:** The nature of Cu^{2+} adsorption by boehmite, gibbsite, and noncrystalline alumina was studied over a range of equilibrium pH (4.5–7.5) and Cu^{2+} concentration (10^{-3} – 10^{-8} M) by electron spin resonance (ESR). Available chemisorption sites at pH 4.5 were the most numerous for noncrystalline alumina (\sim 1 mmole/100 g), less for boehmite, and least for gibbsite as indicated by the relative strength of the rigid-limit ESR signal attributed to Cu^{2+} adsorbed at discrete sites. The chemisorption process involved immobilization of Cu^{2+} by displacement of one or more H_2O ligands by hydroxyl or surface oxygen ions, with the formation of at least one Cu-O-Al bond. As the pH was raised from 4.5 to 6.0, essentially all of the solution Cu^{2+} appeared to be adsorbed by the solids. However, the noncrystalline alumina and boehmite chemisorbed much of the total adsorbed Cu^{2+} (10 mmole/100 g), whereas precipitation or nucleation of Cu(OH)₂ in the gibbsite system was indicated. Precipitated Cu^{2+} was more readily redissolved by exposure to NH_3 vapor than chemisorbed Cu^{2+} . **Key words:** Adsorption • Alumina • Aluminum • Boehmite • Copper • Electron spin resonance • Gibbsite Clays and Clay Minerals; February 1982 v. 30; no. 1; p. 21-28; DOI: 10.1346/CCMN.1982.0300103 © 1982, The Clay Minerals Society (www.clays.org)