Effect of Pressure on the Sorption of Yb by Montmorillonite

Steven E. Miller¹, G. Ross Heath² and Richard D. Gonzalez¹

¹ Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881 ² School of Oceanography, Oregon State University, Corvallis, Oregon 97331

Abstract: X-ray diffraction, infrared, and cation-exchange capacity measurements of the reaction products of montmorillonites with $YbCl_3 \cdot 6H_2O$ show that at 1 atm irreversible sorption of Yb^{3+} increases with increasing temperature in the range 20° to 280° C, whereas at 110atm it decreases with increasing temperature. Above 100° C, less irreversible sorption occurs at 110 atm than at 1 atm. The decreased sorption at high pressure is attributed to reduced cation hydrolytic fixation and to rapid expulsion of interlayer Yb^{3+} by interlayer water at higher temperatures, with a concomitant decrease in Yb^{3+} migration to octahedral sites. At 110 atm, 160° and 200° C treatments cause changes in infrared absorption bands (884 cm⁻¹, 848 cm⁻¹) suggesting that sorbed Yb^{3+} is charge compensated by the deprotonation of Fe³⁺- and Mg²⁺-hydroxyl groups. At 290° C deprotonation is restricted to Fe³⁺-hydroxyl groups.

Key Words: Cation fixation • Deprotonation • Infrared spectroscopy • Lanthanides • Ytterbium

Clays and Clay Minerals; February 1983 v. 31; no. 1; p. 17-21; DOI: <u>10.1346/CCMN.1983.0310103</u> © 1983, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)