Adsorption of Molybdate Anion (MoO₄²⁻) By Sodium-Saturated Kaolinite

Patrick J. Phelan and Shas V. Mattigod

Department of Soil and Environmental Sciences University of California, Riverside, California 92521

Abstract: Adsorption of Mo(VI) on 2–0.2-µm size fraction of sodium-saturated kaolinite at $25 \pm 2^{\circ}$ C and at a constant pH of 7.00 \pm 0.05 was studied. The kaolinite sample was pretreated to remove any surface oxide and hydroxide coatings. The initial concentrations of Mo in solution ranged from 1 to 11 mg/liter in a NaClO₄ background electrolyte at a constant ionic strength of 0.09 \pm 0.01. Calculations of speciation using the GEOCHEM computer program indicated that under experimental conditions Mo(VI) was mainly in the MoO₄^{2–} form. The experimental conditions were also shown to fulfill the requirements for applying the Langmuir equation in interpreting adsorption data. The Langmuir parameter for the adsorption maximum, n⁰ and the affinity parameter, $K_{M_0O_4^{2-}-ClO_4^{-}}$ were computed to be 3.33×10^{-4} mole/mole of adsorbent and 5.969×10^5 , respectively. The large affinity parameter indicated that the Nasaturated kaolinite surface has a very high affinity for MoO₄^{2–} ions relative to ClO_4^{-} ions.

Key Words: Adsorption • Electrolyte • Kaolinite • Molybdate ion • Speciation

Clays and Clay Minerals; February 1984 v. 32; no. 1; p. 45-48; DOI: <u>10.1346/CCMN.1984.0320106</u> © 1984, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)