Iron Sites in Nontronite and the Effect of Interlayer Cations From Mössbauer Spectra

J. H. Johnston and C. M. Cardile

Chemistry Department, Victoria University of Wellington Private Bag, Wellington, New Zealand

Abstract: The ⁵⁷Fe Mössbauer spectra of untreated, Ca- and K-saturated nontronite from Garfield, Washington, were measured. The spectrum of the untreated sample was computer-fitted to 8 peaks defining two octahedral, a tetrahedral, and an interlayer Fe³⁺-quadrupole-split doublets. In the Ca- and K-saturated samples interlayer Fe was absent. Spectra of the untreated sample were recorded at increasing increments of background counts from 2.8×10^5 to 9.2×10^6 . An evaluation of the initial 4- and 6-peak models and the acceptable 8-peak model, computer-fitted to each spectrum, shows that if the X² value is used as a measure of the goodness of the fit, the spectra should be recorded to a background count greater than 3×10^6 . The resulting χ^2 value then reflects both the validity of the model used and the extent of disorder within the structure. The χ^2 value depends linearly on the background counts obtained.

A comparison of the spectra of the Ca- and K-saturated samples with that of the untreated sample shows that the interlayer cations exert a considerable influence on the individual component resonances, particularly the outer octahedral doublet. Hence, it is likely that electrostatic interactions of the nearby tetrahedral Fe^{3+} and the interlayer cations give rise to two distinct electric field gradients within neighboring *cis*-[FeO₄(OH)₂] sites, and hence two octahedral Fe^{3+} doublets in the Mössbauer spectrum. These results are consistent with earlier electron diffraction data in the literature.

Key Words: Interlayer cation • Iron • Mössbauer spectroscopy • Nontronite • Octahedral site

Clays and Clay Minerals; February 1985 v. 33; no. 1; p. 21-30; DOI: <u>10.1346/CCMN.1985.0330103</u> © 1985, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)