Coprecipitation of Iron and Aluminum during Titration of Mixed Al^{3+} , Fe^{3+} , and Fe^{2+} Solutions P. M. Bertsch¹, W. P. Miller², M. A. Anderson³ and L. W. Zelazny³ **Abstract:** Potentiometric titration analysis was used to examine the hydrolysis behavior of Fe^{2+} Fe^{3+} , and Al^{3+} in pure solution and in mixture, in order to evaluate the potential for coprecipitation and mixed solid-phase formation. Mixtures of Fe^{3+} and Al^{3+} did not interact during neutralization; base consumed in their respective buffer regions was equivalent to the total metal added. Fe^{2+} - Al^{3+} solutions, however, showed excess base consumption in the Al^{3+} buffer region, indicating hydrolysis of Fe^{2+} at lower than normal pH. Ferric/ferrous iron analyses of systems at the Al endpoint (pH 5.5) showed amounts of oxidized Fe equivalent to the excess base consumption ($\sim 10\%$ of total Fe), with substantial amounts of Fe^{2+} sorbed to or occluded within Al polymers present. Increased electrolyte levels or the presence of SO_4^{2-} inhibited oxidation and sorption of Fe^{2+} on Al surfaces, suggesting that Fe hydrolysis and oxidation was catalyzed at the surfaces. Increasing Al^{3+} : Fe^{2+} ratios in the titrated solutions also increased the amount of Fe^{2+} coprecipitation, supporting a surface-mediated reaction mechanism. Ferrous iron oxidation was sensitive to O_2 levels, which also affected the amount of coprecipitation. These findings suggest that surface-facilitated oxidation of Fe^{2+} may be important in the formation of mixed Fe-Al mineral phases in dilute soil solutions. **Key Words:** Aluminum • Hydrolysis • Iron • Oxidation • Potentiometric titration Clays and Clay Minerals; February 1989 v. 37; no. 1; p. 12-18; DOI: 10.1346/CCMN.1989.0370102 © 1989, The Clay Minerals Society (www.clays.org) ¹ Division of Biogeochemistry, Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, South Carolina 29801 ² Department of Agronomy, University of Georgia, Athens, Georgia 30602 ³ Department of Agronomy, Soil, and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061