Effect of Time and Temperature on the Chemical Composition and Crystallization of Mixed Iron and Aluminum Species

C. Colombo and A. Violante

Dipartimento di Scienze Chimico-Agrarie, Università di Napoli "Federico II," 80055 Portici, Napoli, Italy

Abstract: We studied the influence of time ageing (up to 120 d at 50° C or 30d at 95° C) on the mineralogical and chemical composition of hydrolytic species of mixed aluminum and iron samples formed at pH 5.0 and initial Fe/Al molar ratio (Ri) ranging from 0.1 to 10. The partitioning distribution of Fe and Al in soluble or solid phases of different sizes (<0.01, 0.2-0.01, >0.2 μ m) depended on Ri and time. The ratio of Fe to Al of the <0.2 μ m Fe-Al species of the samples at Ri \leq 4 slowly increased with time. Usually the higher Ri the higher the amount of Fe + Al present in soluble or very fine solids (<0.2 μ m). With time, high percentages of Fe were found mainly in the <0.01 μ m while the Al increase in the >0.2 μ m sizes. Gibbsite, without the presence of well-crystallized Fe-oxides was formed in the samples at Ri \leq 0.5 after 7— 120 d at 50° C. In the samples at Ri \geq 1 low-crystalline ferrihydrite was observed after \geq 60 d. Only after 120 d did gibbsite or hematite start to form in the samples at Ri = 1— 10. However, even after prolonged ageing at 95° C, low-crystalline ferrihydrite was still present at Ri \leq 4.

The Fe-Al samples at Ri \geq 1 aged 32 d at 50° C dissolved almost completely by acid ammonium-oxalate (82–93%), but the samples at Ri \leq 0.5 were only partially solubilized (13–60%). After further 30 d at 95° C, the percentages of Fe + Al solubilized by oxalate from the samples at R \geq 0.5 was still relatively high (22–39%).

Key Words: Aluminum • Crystallization • Gibbsite • Iron

Clays and Clay Minerals; February 1996 v. 44; no. 1; p. 113-120; DOI: 10.1346/CCMN.1996.0440110 © 1996, The Clay Minerals Society (www.clays.org)