Tin—Clay Complexes: A Mössbauer Study

D. Petridis¹ and T. Bakas²

¹ Institute of Materials Science, N.R.C.P.S. "Demokritos", GR-153 10, Athens, Greece ² Physics Department, University of Ioannina, GR-451 10, Ioannina, Greece

Abstract: Divalent tin has been intercalated into montmorillonite by reacting partially hydrolyzed solutions of $SnCl_2$ under aerobic conditions at pH = 2.8 with aqueous dispersions of the smectite mineral. The precursor tin solution contains mainly the cationic trimeric ion $Sn_3(OH)_4^{2+}$, which is shown to take part in the exchange reactions with the surface cations of the mineral. Variable temperature Mössbauer spectroscopy was used in order to: 1) directly probe changes in the oxidation state and coordination environment of Sn^{2+} in the process of intercalation; 2) examine the nature of tin atoms on the external surfaces and in the interlayer space of the clay platelets; and 3) study the dynamics of motion of tin atoms on the clay surfaces.

The main conclusion from these studies is that about 75% of the $\mathrm{Sn^{2+}}$ ions undergo extensive oxidation to the +4 state with concomitant hydrolysis and condensation that lead to the precipitation of $\mathrm{SnO_2}$ on the external surfaces of the clay. The rest of the $\mathrm{Sn^{2+}}$ ions are introduced into the lamellar zone, as evidenced by the detailed Mössbauer analysis of the dynamics of motion of tin atoms on the clay surfaces.

Key Words: Clay • Montmorillonite • Mössbauer • Intercalation

Clays and Clay Minerals; February 1997 v. 45; no. 1; p. 73-76; DOI: 10.1346/CCMN.1997.0450108 © 1997, The Clay Minerals Society (www.clays.org)