Infrared Study of Water Sorption on Na-, Li-, Ca-, and Mg-Exchanged (SWy-1 and SAz-1) Montmorillonite

Weizong Xu¹, Cliff T. Johnston¹, Paul Parker¹ and Stephen F. Agnew²

¹ Crop, Soil and Environmental Sciences, Agronomy Department, Purdue University, West Lafayette, Indiana 47907-1150, USA ² CST4, MS J586, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

E-mail of corresponding author: clays@purdue.edu

Abstract: An environmental infrared microbalance (EIRM) cell was used to study H_2O sorption on two montmorillonite samples as a function of water content and type of exchangeable cation. The vibrational spectra showed that H_2O sorbed to the clay at low-water content was strongly influenced by the exchangeable cation and by the close proximity to the clay surface. At water contents <6 H_2O molecules per exchangeable cation, the H-O-H bending mode of H_2O (v_2 mode) shifts to a lower frequency and is characterized by an increase in molar absorptivity. In contrast, the positions of the asymmetric and symmetric OH-stretching modes of sorbed water (v_1 and v_3 modes) shift to higher energies. These observations indicate that H_2O molecules sorbed to the clay surface at low-water content are less hydrogen bonded than in bulk H_2O . In addition, the vibrational-stretching and bending bands of the structural OH groups of the 2:1 layer are also strongly influenced by H_2O content and type of exchangeable cation. By using the EIRM cell, the molar absorptivities of the structural OH-bending vibrations were measured as a function of H_2O content. The position and molar absorptivity of the structural OH-bending bands at 920, 883, and 840 cm⁻¹ are strongly influenced by H_2O content and type of exchangeable cation. The molar absorptivity of the 920-cm⁻¹ band, which is assigned to the AlAlOH group, decreased strongly at low- H_2O content. This reduction in intensity is assigned to a dehydration-induced change in orientation of the structural OH groups resulting from the penetration of H_2O molecules into siloxane ditrigonal cavities that are not associated with a net negative charge from isomorphous substitutions.

Key Words: Exchangeable Cation • FTIR • Hydration • Hysteresis • Smectite • Sorption • Water

Clays and Clay Minerals; February 2000 v. 48; no. 1; p. 120-131; DOI: <u>10.1346/CCMN.2000.0480115</u> © 2000, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)