Interaction of Synthetic Sulphate "Green Rust" with Phosphate and the Crystallization of Vivianite

Hans Christian Bruun Hansen and Inge Fiil Poulsen

Chemistry Department, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frdb. C, Copenhagen, Denmark

Abstract: Because layered Fe(II)Fe(III)-hydroxides (Green rusts, GRs) are anion exchangers, they represent potential orthophosphate sorbents in anoxic soils and sediments. To evaluate this possibility, two types of experiments with synthetic sulphate-interlayered GRs ($GR_{SO4} = Fe^{2+}{}_{4}Fe^{3+}{}_{2}(OH)_{12}SO_{4} xH_{2}O$) were studied. First, sorption of phosphate in GR_{SO4} was followed by reacting suspensions of pure $GR_{SO_{4}}$ synthesized by oxidation of Fe(II) with an excess of Na₂HPO₄ (pH 9.3).

Second the possible incorporation of phosphate in GR during formation by Fe(II)-induced reductive dissolution of phosphatecontaining ferrihydrites was examined in systems containing an excess of Fe(II) (pH 7). With excess phosphate in solution, GR_{SO_4} initially sorbed phosphate in the interlayer producing a basal layer spacing of 1.04 nm, but only ~50% of the interlayer

sulphate was exchanged with phosphate. This GR slowly transformed to vivianite within months. In the Fe(II)-rich systems, reaction with synthetic ferrihydrites produced GR_{SO4} similar to that produced by air oxidation. Reaction of Fe(II) with phosphate-containing ferrihydrites initially produced amorphous greenish phosphate containing precipitates which, after 3– 4 h, crystallized to GR_{SO4} and vivianite. In these solutions, stable phosphate-free GR_{SO4} can form since precipitation of vivianite produced low phosphate activity. Consequently, in both systems GR or amorphous greenish precipitates act as reactive intermediates, but vivianite is the stable end-product limiting phosphate concentration in solution. It is also inferred that Fe(OH)₂ is an unlikely phosphate sorbent in mixed Fe(II)-Fe(III) systems because GR phases are more stable (less soluble) than Fe(OH) 2[.]

Key Words: Anion Exchange • Fe(II)FeIII-hydroxides • Green Rust • Layered Hydroxides • Phosphate • Vivianite

Clays and Clay Minerals; June 1999 v. 47; no. 3; p. 312-318; DOI: <u>10.1346/CCMN.1999.0470307</u> © 1999, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)