Nuclear Magnetic Resonance (NMR) Study of Cd²⁺ Sorption on Montmorillonite

Paola Di Leo¹ and Paul O'Brien²

E-mail of corresponding author: pdileo@ira.pz.cnr.it

Abstract: ¹¹³Cd solid-state nuclear magnetic resonance (NMR) was used to identify possible Cd²⁺ adsorption sites in montmorillonite. The montmorillonite was treated with 0.1 and 1 M CdCl₂ aqueous solutions and samples with 13 and 8-μm particle size were used. The data are consistent with a two-site model for sorption of Cd²⁺ on montmorillonite. Cd²⁺ is localized in the montmorillonite in two different sites: 1) in the interlayers as hydrated Cd²⁺ and 2) on the external surface, probably with few H₂O molecules hydrating to it. Cadmium is also adsorbed as CdCl⁺ in the interlayer. Treatment with a 0.1 M CdCl₂ solution produces adsorption of free Cd²⁺ in the interlayer whereas treatment with 1 M CdCl₂ resulted in adsorption of Cd²⁺ in both the interlayer and on surface sites and the adsorption of CdCl⁺ in the interlayer. A larger particle size favors Cd²⁺ adsorption in the interlayer.

Key Words: Adsorption • Cadmium • Montmorillonite • Nuclear Magnetic Resonance

Clays and Clay Minerals; December 1999 v. 47; no. 6; p. 761-768; DOI: 10.1346/CCMN.1999.0470611 © 1999, The Clay Minerals Society (www.clays.org)

¹ Istituto di Ricerca sulle Argille, CNR, Area di Ricerca di Potenza, Via S. Ioja, 85050 Tito Scalo (PZ), Italy

² Imperial College of Science, Technology and Medicine, South Kensington, SW72AY London, England