Oxygen Isotope Compositions of Mixed-Layer Serpentine-Chlorite and Illite-Smectite in the Tuscaloosa Formation (U.S. Gulf Coast): Implications for Pore Fluids and Mineralogic Reactions

P. C. Ryan¹, M. E. Conrad², K. Brown³, C. P. Chamberlain³ and R. C. Reynolds Jr.³

¹ Environmental Science Program, Salish Kootenai College, Pablo, Montana 59855
² MS 70A-3363, Lawrence Berkeley Laboratory, Berkeley, California 94720
³ Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755

Abstract: Oxygen isotopic compositions were determined for coexisting mixed-layer serpentine-chlorite (Sp-Ch) and illitesmectite (I-S) from 5 Tuscaloosa Formation sandstone cores sampled between 1937 and 5470 m burial depth. High gradient magnetic separation (HGMS) was used to concentrate Sp-Ch and I-S from the <0.5 µm fraction of each core sample into fractions with a range in the Sp-Ch : I-S ratio, and end-member δ^{18} O compositions were determined by extrapolation. The Sp-Ch δ^{18} O values range from +10.4 to 13.7‰ and increase with burial between 3509 and 5470 m. The only exception is Sp-Ch from 1937 m, which has an anomalously high δ^{18} O value of +12.6‰ The I-S δ^{18} O values range from +16.1 to 17.3‰ and do not change significantly between 3509 and 5470 m burial depth.

Pore water δ^{18} O compositions calculated from Sp-Ch and I-S values and measured borehole temperatures range from -2.6 to +10.3%. The isotopically light values indicate that Sp-Ch formed at shallow burial depths in the presence of brackish to marine water and/or meteoric water. The depth-related increase in δ^{18} O of Sp-Ch is attributed to oxygen exchange between mineral and pore water during diagenetic mineral reactions. Increasing δ^{18} O values, in conjunction with XRD and SEM data, indicate that transformation of serpentine layers to chlorite layers and *Ibb* polytype layers to *Iaa* polytype layers occurred on a layer-by-layer basis when individual layers dissolved and recrystallized within the confines of coherent crystals. Possible explanations for the variation in I-S δ^{18} O values include depth-related differences in pore water δ^{18} O values present at the time of I-S crystallization, contamination by detrital $2M_1$ mica and 1M polytype rotations that facilitated oxygen exchange.

Key Words: Diagenesis • Illite-Smectite • Oxygen Isotopes • Sandstone • Serpentine-Chlorite • Tuscaloosa Formation

Clays and Clay Minerals; August 1998 v. 46; no. 4; p. 357-368; DOI: <u>10.1346/CCMN.1998.0460401</u> © 1998, The Clay Minerals Society Clay Minerals Society (<u>www.clays.org</u>)